Solve for x
x = \frac{10 \sqrt{2665} - 50}{3} \approx 155.412126655
x=\frac{-10\sqrt{2665}-50}{3}\approx -188.745459989
Graph
Share
Copied to clipboard
0.003x^{2}+0.1x=88
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.003x^{2}+0.1x-88=88-88
Subtract 88 from both sides of the equation.
0.003x^{2}+0.1x-88=0
Subtracting 88 from itself leaves 0.
x=\frac{-0.1±\sqrt{0.1^{2}-4\times 0.003\left(-88\right)}}{2\times 0.003}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.003 for a, 0.1 for b, and -88 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.1±\sqrt{0.01-4\times 0.003\left(-88\right)}}{2\times 0.003}
Square 0.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.1±\sqrt{0.01-0.012\left(-88\right)}}{2\times 0.003}
Multiply -4 times 0.003.
x=\frac{-0.1±\sqrt{0.01+1.056}}{2\times 0.003}
Multiply -0.012 times -88.
x=\frac{-0.1±\sqrt{1.066}}{2\times 0.003}
Add 0.01 to 1.056 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.1±\frac{\sqrt{2665}}{50}}{2\times 0.003}
Take the square root of 1.066.
x=\frac{-0.1±\frac{\sqrt{2665}}{50}}{0.006}
Multiply 2 times 0.003.
x=\frac{\frac{\sqrt{2665}}{50}-\frac{1}{10}}{0.006}
Now solve the equation x=\frac{-0.1±\frac{\sqrt{2665}}{50}}{0.006} when ± is plus. Add -0.1 to \frac{\sqrt{2665}}{50}.
x=\frac{10\sqrt{2665}-50}{3}
Divide -\frac{1}{10}+\frac{\sqrt{2665}}{50} by 0.006 by multiplying -\frac{1}{10}+\frac{\sqrt{2665}}{50} by the reciprocal of 0.006.
x=\frac{-\frac{\sqrt{2665}}{50}-\frac{1}{10}}{0.006}
Now solve the equation x=\frac{-0.1±\frac{\sqrt{2665}}{50}}{0.006} when ± is minus. Subtract \frac{\sqrt{2665}}{50} from -0.1.
x=\frac{-10\sqrt{2665}-50}{3}
Divide -\frac{1}{10}-\frac{\sqrt{2665}}{50} by 0.006 by multiplying -\frac{1}{10}-\frac{\sqrt{2665}}{50} by the reciprocal of 0.006.
x=\frac{10\sqrt{2665}-50}{3} x=\frac{-10\sqrt{2665}-50}{3}
The equation is now solved.
0.003x^{2}+0.1x=88
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.003x^{2}+0.1x}{0.003}=\frac{88}{0.003}
Divide both sides of the equation by 0.003, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{0.1}{0.003}x=\frac{88}{0.003}
Dividing by 0.003 undoes the multiplication by 0.003.
x^{2}+\frac{100}{3}x=\frac{88}{0.003}
Divide 0.1 by 0.003 by multiplying 0.1 by the reciprocal of 0.003.
x^{2}+\frac{100}{3}x=\frac{88000}{3}
Divide 88 by 0.003 by multiplying 88 by the reciprocal of 0.003.
x^{2}+\frac{100}{3}x+\frac{50}{3}^{2}=\frac{88000}{3}+\frac{50}{3}^{2}
Divide \frac{100}{3}, the coefficient of the x term, by 2 to get \frac{50}{3}. Then add the square of \frac{50}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{100}{3}x+\frac{2500}{9}=\frac{88000}{3}+\frac{2500}{9}
Square \frac{50}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{100}{3}x+\frac{2500}{9}=\frac{266500}{9}
Add \frac{88000}{3} to \frac{2500}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{50}{3}\right)^{2}=\frac{266500}{9}
Factor x^{2}+\frac{100}{3}x+\frac{2500}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{50}{3}\right)^{2}}=\sqrt{\frac{266500}{9}}
Take the square root of both sides of the equation.
x+\frac{50}{3}=\frac{10\sqrt{2665}}{3} x+\frac{50}{3}=-\frac{10\sqrt{2665}}{3}
Simplify.
x=\frac{10\sqrt{2665}-50}{3} x=\frac{-10\sqrt{2665}-50}{3}
Subtract \frac{50}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}