Solve for t
t=\frac{i\times 12\sqrt{5}}{25}+8\approx 8+1.073312629i
t=-\frac{i\times 12\sqrt{5}}{25}+8\approx 8-1.073312629i
Quiz
Complex Number
5 problems similar to:
0.1 t ^ { 2 } = 0.64 + 1.6 ( t - 8 ) - 4.9 ( t - 8 ) ^ { 2 }
Share
Copied to clipboard
0.1t^{2}=0.64+1.6t-12.8-4.9\left(t-8\right)^{2}
Use the distributive property to multiply 1.6 by t-8.
0.1t^{2}=-12.16+1.6t-4.9\left(t-8\right)^{2}
Subtract 12.8 from 0.64 to get -12.16.
0.1t^{2}=-12.16+1.6t-4.9\left(t^{2}-16t+64\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-8\right)^{2}.
0.1t^{2}=-12.16+1.6t-4.9t^{2}+78.4t-313.6
Use the distributive property to multiply -4.9 by t^{2}-16t+64.
0.1t^{2}=-12.16+80t-4.9t^{2}-313.6
Combine 1.6t and 78.4t to get 80t.
0.1t^{2}=-325.76+80t-4.9t^{2}
Subtract 313.6 from -12.16 to get -325.76.
0.1t^{2}-\left(-325.76\right)=80t-4.9t^{2}
Subtract -325.76 from both sides.
0.1t^{2}+325.76=80t-4.9t^{2}
The opposite of -325.76 is 325.76.
0.1t^{2}+325.76-80t=-4.9t^{2}
Subtract 80t from both sides.
0.1t^{2}+325.76-80t+4.9t^{2}=0
Add 4.9t^{2} to both sides.
5t^{2}+325.76-80t=0
Combine 0.1t^{2} and 4.9t^{2} to get 5t^{2}.
5t^{2}-80t+325.76=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 5\times 325.76}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -80 for b, and 325.76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-80\right)±\sqrt{6400-4\times 5\times 325.76}}{2\times 5}
Square -80.
t=\frac{-\left(-80\right)±\sqrt{6400-20\times 325.76}}{2\times 5}
Multiply -4 times 5.
t=\frac{-\left(-80\right)±\sqrt{6400-6515.2}}{2\times 5}
Multiply -20 times 325.76.
t=\frac{-\left(-80\right)±\sqrt{-115.2}}{2\times 5}
Add 6400 to -6515.2.
t=\frac{-\left(-80\right)±\frac{24\sqrt{5}i}{5}}{2\times 5}
Take the square root of -115.2.
t=\frac{80±\frac{24\sqrt{5}i}{5}}{2\times 5}
The opposite of -80 is 80.
t=\frac{80±\frac{24\sqrt{5}i}{5}}{10}
Multiply 2 times 5.
t=\frac{\frac{24\sqrt{5}i}{5}+80}{10}
Now solve the equation t=\frac{80±\frac{24\sqrt{5}i}{5}}{10} when ± is plus. Add 80 to \frac{24i\sqrt{5}}{5}.
t=\frac{12\sqrt{5}i}{25}+8
Divide 80+\frac{24i\sqrt{5}}{5} by 10.
t=\frac{-\frac{24\sqrt{5}i}{5}+80}{10}
Now solve the equation t=\frac{80±\frac{24\sqrt{5}i}{5}}{10} when ± is minus. Subtract \frac{24i\sqrt{5}}{5} from 80.
t=-\frac{12\sqrt{5}i}{25}+8
Divide 80-\frac{24i\sqrt{5}}{5} by 10.
t=\frac{12\sqrt{5}i}{25}+8 t=-\frac{12\sqrt{5}i}{25}+8
The equation is now solved.
0.1t^{2}=0.64+1.6t-12.8-4.9\left(t-8\right)^{2}
Use the distributive property to multiply 1.6 by t-8.
0.1t^{2}=-12.16+1.6t-4.9\left(t-8\right)^{2}
Subtract 12.8 from 0.64 to get -12.16.
0.1t^{2}=-12.16+1.6t-4.9\left(t^{2}-16t+64\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-8\right)^{2}.
0.1t^{2}=-12.16+1.6t-4.9t^{2}+78.4t-313.6
Use the distributive property to multiply -4.9 by t^{2}-16t+64.
0.1t^{2}=-12.16+80t-4.9t^{2}-313.6
Combine 1.6t and 78.4t to get 80t.
0.1t^{2}=-325.76+80t-4.9t^{2}
Subtract 313.6 from -12.16 to get -325.76.
0.1t^{2}-80t=-325.76-4.9t^{2}
Subtract 80t from both sides.
0.1t^{2}-80t+4.9t^{2}=-325.76
Add 4.9t^{2} to both sides.
5t^{2}-80t=-325.76
Combine 0.1t^{2} and 4.9t^{2} to get 5t^{2}.
\frac{5t^{2}-80t}{5}=-\frac{325.76}{5}
Divide both sides by 5.
t^{2}+\left(-\frac{80}{5}\right)t=-\frac{325.76}{5}
Dividing by 5 undoes the multiplication by 5.
t^{2}-16t=-\frac{325.76}{5}
Divide -80 by 5.
t^{2}-16t=-65.152
Divide -325.76 by 5.
t^{2}-16t+\left(-8\right)^{2}=-65.152+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-16t+64=-65.152+64
Square -8.
t^{2}-16t+64=-1.152
Add -65.152 to 64.
\left(t-8\right)^{2}=-1.152
Factor t^{2}-16t+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-8\right)^{2}}=\sqrt{-1.152}
Take the square root of both sides of the equation.
t-8=\frac{12\sqrt{5}i}{25} t-8=-\frac{12\sqrt{5}i}{25}
Simplify.
t=\frac{12\sqrt{5}i}{25}+8 t=-\frac{12\sqrt{5}i}{25}+8
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}