Solve for t
t = \frac{295}{7} = 42\frac{1}{7} \approx 42.142857143
Share
Copied to clipboard
0.25+\left(t-35\right)\times 0.035=0.5
Add 0.1 and 0.15 to get 0.25.
0.25+0.035t-1.225=0.5
Use the distributive property to multiply t-35 by 0.035.
-0.975+0.035t=0.5
Subtract 1.225 from 0.25 to get -0.975.
0.035t=0.5+0.975
Add 0.975 to both sides.
0.035t=1.475
Add 0.5 and 0.975 to get 1.475.
t=\frac{1.475}{0.035}
Divide both sides by 0.035.
t=\frac{1475}{35}
Expand \frac{1.475}{0.035} by multiplying both numerator and the denominator by 1000.
t=\frac{295}{7}
Reduce the fraction \frac{1475}{35} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}