Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

0.085q^{2}-11.9q+320=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
q=\frac{-\left(-11.9\right)±\sqrt{\left(-11.9\right)^{2}-4\times 0.085\times 320}}{0.085\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 0.085 for a, -11.9 for b, and 320 for c in the quadratic formula.
q=\frac{11.9±\frac{1}{10}\sqrt{3281}}{0.17}
Do the calculations.
q=\frac{10\sqrt{3281}}{17}+70 q=-\frac{10\sqrt{3281}}{17}+70
Solve the equation q=\frac{11.9±\frac{1}{10}\sqrt{3281}}{0.17} when ± is plus and when ± is minus.
0.085\left(q-\left(\frac{10\sqrt{3281}}{17}+70\right)\right)\left(q-\left(-\frac{10\sqrt{3281}}{17}+70\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
q-\left(\frac{10\sqrt{3281}}{17}+70\right)\geq 0 q-\left(-\frac{10\sqrt{3281}}{17}+70\right)\leq 0
For the product to be ≤0, one of the values q-\left(\frac{10\sqrt{3281}}{17}+70\right) and q-\left(-\frac{10\sqrt{3281}}{17}+70\right) has to be ≥0 and the other has to be ≤0. Consider the case when q-\left(\frac{10\sqrt{3281}}{17}+70\right)\geq 0 and q-\left(-\frac{10\sqrt{3281}}{17}+70\right)\leq 0.
q\in \emptyset
This is false for any q.
q-\left(-\frac{10\sqrt{3281}}{17}+70\right)\geq 0 q-\left(\frac{10\sqrt{3281}}{17}+70\right)\leq 0
Consider the case when q-\left(\frac{10\sqrt{3281}}{17}+70\right)\leq 0 and q-\left(-\frac{10\sqrt{3281}}{17}+70\right)\geq 0.
q\in \begin{bmatrix}-\frac{10\sqrt{3281}}{17}+70,\frac{10\sqrt{3281}}{17}+70\end{bmatrix}
The solution satisfying both inequalities is q\in \left[-\frac{10\sqrt{3281}}{17}+70,\frac{10\sqrt{3281}}{17}+70\right].
q\in \begin{bmatrix}-\frac{10\sqrt{3281}}{17}+70,\frac{10\sqrt{3281}}{17}+70\end{bmatrix}
The final solution is the union of the obtained solutions.