Evaluate
\frac{3\sqrt{6}}{4}+2.5\approx 4.337117307
Share
Copied to clipboard
0.0625^{\frac{1}{4}}+\left(-3\right)^{1}-\left(\sqrt{5}-\sqrt{3}\right)^{0}+\sqrt{\frac{3\times 8+3}{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and \frac{1}{4} to get 1.
\frac{1}{2}+\left(-3\right)^{1}-\left(\sqrt{5}-\sqrt{3}\right)^{0}+\sqrt{\frac{3\times 8+3}{8}}
Calculate 0.0625 to the power of \frac{1}{4} and get \frac{1}{2}.
\frac{1}{2}-3-\left(\sqrt{5}-\sqrt{3}\right)^{0}+\sqrt{\frac{3\times 8+3}{8}}
Calculate -3 to the power of 1 and get -3.
-\frac{5}{2}-\left(\sqrt{5}-\sqrt{3}\right)^{0}+\sqrt{\frac{3\times 8+3}{8}}
Subtract 3 from \frac{1}{2} to get -\frac{5}{2}.
-\frac{5}{2}-1+\sqrt{\frac{3\times 8+3}{8}}
Calculate \sqrt{5}-\sqrt{3} to the power of 0 and get 1.
-\frac{7}{2}+\sqrt{\frac{3\times 8+3}{8}}
Subtract 1 from -\frac{5}{2} to get -\frac{7}{2}.
-\frac{7}{2}+\sqrt{\frac{24+3}{8}}
Multiply 3 and 8 to get 24.
-\frac{7}{2}+\sqrt{\frac{27}{8}}
Add 24 and 3 to get 27.
-\frac{7}{2}+\frac{\sqrt{27}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{27}{8}} as the division of square roots \frac{\sqrt{27}}{\sqrt{8}}.
-\frac{7}{2}+\frac{3\sqrt{3}}{\sqrt{8}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-\frac{7}{2}+\frac{3\sqrt{3}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-\frac{7}{2}+\frac{3\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
-\frac{7}{2}+\frac{3\sqrt{3}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
-\frac{7}{2}+\frac{3\sqrt{6}}{2\times 2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
-\frac{7}{2}+\frac{3\sqrt{6}}{4}
Multiply 2 and 2 to get 4.
-\frac{7\times 2}{4}+\frac{3\sqrt{6}}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply -\frac{7}{2} times \frac{2}{2}.
\frac{-7\times 2+3\sqrt{6}}{4}
Since -\frac{7\times 2}{4} and \frac{3\sqrt{6}}{4} have the same denominator, add them by adding their numerators.
\frac{-14+3\sqrt{6}}{4}
Do the multiplications in -7\times 2+3\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}