Solve for N
N=50\ln(4000)\approx 414.702482005
Share
Copied to clipboard
0.05=200e^{-2\times 0.1^{2}N}
Multiply 2 and 100 to get 200.
0.05=200e^{-2\times 0.01N}
Calculate 0.1 to the power of 2 and get 0.01.
0.05=200e^{-0.02N}
Multiply -2 and 0.01 to get -0.02.
200e^{-0.02N}=0.05
Swap sides so that all variable terms are on the left hand side.
e^{-0.02N}=\frac{0.05}{200}
Divide both sides by 200.
e^{-0.02N}=\frac{5}{20000}
Expand \frac{0.05}{200} by multiplying both numerator and the denominator by 100.
e^{-0.02N}=\frac{1}{4000}
Reduce the fraction \frac{5}{20000} to lowest terms by extracting and canceling out 5.
\log(e^{-0.02N})=\log(\frac{1}{4000})
Take the logarithm of both sides of the equation.
-0.02N\log(e)=\log(\frac{1}{4000})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-0.02N=\frac{\log(\frac{1}{4000})}{\log(e)}
Divide both sides by \log(e).
-0.02N=\log_{e}\left(\frac{1}{4000}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
N=-\frac{\ln(4000)}{-0.02}
Multiply both sides by -50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}