Solve for x
x=\frac{\sqrt{41}}{10}\approx 0.640312424
x=-\frac{\sqrt{41}}{10}\approx -0.640312424
Graph
Share
Copied to clipboard
0.04+x^{2}=9\times \frac{2}{40}
Expand \frac{0.2}{4} by multiplying both numerator and the denominator by 10.
0.04+x^{2}=9\times \frac{1}{20}
Reduce the fraction \frac{2}{40} to lowest terms by extracting and canceling out 2.
0.04+x^{2}=\frac{9}{20}
Multiply 9 and \frac{1}{20} to get \frac{9}{20}.
x^{2}=\frac{9}{20}-0.04
Subtract 0.04 from both sides.
x^{2}=\frac{41}{100}
Subtract 0.04 from \frac{9}{20} to get \frac{41}{100}.
x=\frac{\sqrt{41}}{10} x=-\frac{\sqrt{41}}{10}
Take the square root of both sides of the equation.
0.04+x^{2}=9\times \frac{2}{40}
Expand \frac{0.2}{4} by multiplying both numerator and the denominator by 10.
0.04+x^{2}=9\times \frac{1}{20}
Reduce the fraction \frac{2}{40} to lowest terms by extracting and canceling out 2.
0.04+x^{2}=\frac{9}{20}
Multiply 9 and \frac{1}{20} to get \frac{9}{20}.
0.04+x^{2}-\frac{9}{20}=0
Subtract \frac{9}{20} from both sides.
-\frac{41}{100}+x^{2}=0
Subtract \frac{9}{20} from 0.04 to get -\frac{41}{100}.
x^{2}-\frac{41}{100}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{41}{100}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{41}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{41}{100}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{41}{25}}}{2}
Multiply -4 times -\frac{41}{100}.
x=\frac{0±\frac{\sqrt{41}}{5}}{2}
Take the square root of \frac{41}{25}.
x=\frac{\sqrt{41}}{10}
Now solve the equation x=\frac{0±\frac{\sqrt{41}}{5}}{2} when ± is plus.
x=-\frac{\sqrt{41}}{10}
Now solve the equation x=\frac{0±\frac{\sqrt{41}}{5}}{2} when ± is minus.
x=\frac{\sqrt{41}}{10} x=-\frac{\sqrt{41}}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}