Evaluate
0.046592
Factor
\frac{7 \cdot 13 \cdot 2 ^ {3}}{5 ^ {6}} = 0.046592
Share
Copied to clipboard
0.0327+0.01436+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Multiply 0.4 and 0.0359 to get 0.01436.
0.04706+\frac{0.4\left(0.4-1\right)\times 0.0039}{2}
Add 0.0327 and 0.01436 to get 0.04706.
0.04706+\frac{0.4\left(-0.6\right)\times 0.0039}{2}
Subtract 1 from 0.4 to get -0.6.
0.04706+\frac{-0.24\times 0.0039}{2}
Multiply 0.4 and -0.6 to get -0.24.
0.04706+\frac{-0.000936}{2}
Multiply -0.24 and 0.0039 to get -0.000936.
0.04706+\frac{-936}{2000000}
Expand \frac{-0.000936}{2} by multiplying both numerator and the denominator by 1000000.
0.04706-\frac{117}{250000}
Reduce the fraction \frac{-936}{2000000} to lowest terms by extracting and canceling out 8.
\frac{2353}{50000}-\frac{117}{250000}
Convert decimal number 0.04706 to fraction \frac{4706}{100000}. Reduce the fraction \frac{4706}{100000} to lowest terms by extracting and canceling out 2.
\frac{11765}{250000}-\frac{117}{250000}
Least common multiple of 50000 and 250000 is 250000. Convert \frac{2353}{50000} and \frac{117}{250000} to fractions with denominator 250000.
\frac{11765-117}{250000}
Since \frac{11765}{250000} and \frac{117}{250000} have the same denominator, subtract them by subtracting their numerators.
\frac{11648}{250000}
Subtract 117 from 11765 to get 11648.
\frac{728}{15625}
Reduce the fraction \frac{11648}{250000} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}