Skip to main content
Solve for x
Tick mark Image
Graph

Share

0.03=2x\left(1-\frac{100}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.03=2x\left(1-\frac{100}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.03=2x\left(1-\frac{100}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.03=2x\left(1-\frac{100\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{100}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.03=2x\left(1-\frac{100\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.03=2x\left(1-\frac{\sqrt{249}}{2\times 249}\right)-1
Cancel out 100 in both numerator and denominator.
0.03=2x\left(1-\frac{\sqrt{249}}{498}\right)-1
Multiply 2 and 249 to get 498.
0.03=2x+2x\left(-\frac{\sqrt{249}}{498}\right)-1
Use the distributive property to multiply 2x by 1-\frac{\sqrt{249}}{498}.
0.03=2x+\frac{\sqrt{249}}{-249}x-1
Cancel out 498, the greatest common factor in 2 and 498.
0.03=2x+\frac{\sqrt{249}x}{-249}-1
Express \frac{\sqrt{249}}{-249}x as a single fraction.
2x+\frac{\sqrt{249}x}{-249}-1=0.03
Swap sides so that all variable terms are on the left hand side.
2x+\frac{\sqrt{249}x}{-249}=0.03+1
Add 1 to both sides.
2x+\frac{\sqrt{249}x}{-249}=1.03
Add 0.03 and 1 to get 1.03.
-498x+\sqrt{249}x=-256.47
Multiply both sides of the equation by -249.
\left(-498+\sqrt{249}\right)x=-256.47
Combine all terms containing x.
\left(\sqrt{249}-498\right)x=-256.47
The equation is in standard form.
\frac{\left(\sqrt{249}-498\right)x}{\sqrt{249}-498}=-\frac{256.47}{\sqrt{249}-498}
Divide both sides by -498+\sqrt{249}.
x=-\frac{256.47}{\sqrt{249}-498}
Dividing by -498+\sqrt{249} undoes the multiplication by -498+\sqrt{249}.
x=\frac{103\sqrt{249}}{99500}+\frac{25647}{49750}
Divide -256.47 by -498+\sqrt{249}.