Solve for m
m=-\frac{5t^{2}}{8}+30t-340
Solve for t
t=-\frac{2\sqrt{200-10m}}{5}+24
t=\frac{2\sqrt{200-10m}}{5}+24\text{, }m\leq 20
Quiz
Linear Equation
5 problems similar to:
0.01 m + 0.2 = - \frac { 1 } { 160 } ( t - 24 ) ^ { 2 } + 0.4
Share
Copied to clipboard
0.01m+0.2=-\frac{1}{160}\left(t^{2}-48t+576\right)+0.4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-24\right)^{2}.
0.01m+0.2=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{18}{5}+0.4
Use the distributive property to multiply -\frac{1}{160} by t^{2}-48t+576.
0.01m+0.2=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{16}{5}
Add -\frac{18}{5} and 0.4 to get -\frac{16}{5}.
0.01m=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{16}{5}-0.2
Subtract 0.2 from both sides.
0.01m=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{17}{5}
Subtract 0.2 from -\frac{16}{5} to get -\frac{17}{5}.
0.01m=-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}
The equation is in standard form.
\frac{0.01m}{0.01}=\frac{-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}}{0.01}
Multiply both sides by 100.
m=\frac{-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}}{0.01}
Dividing by 0.01 undoes the multiplication by 0.01.
m=-\frac{5t^{2}}{8}+30t-340
Divide -\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5} by 0.01 by multiplying -\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5} by the reciprocal of 0.01.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}