Skip to main content
Solve for m
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

0.01m+0.2=-\frac{1}{160}\left(t^{2}-48t+576\right)+0.4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-24\right)^{2}.
0.01m+0.2=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{18}{5}+0.4
Use the distributive property to multiply -\frac{1}{160} by t^{2}-48t+576.
0.01m+0.2=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{16}{5}
Add -\frac{18}{5} and 0.4 to get -\frac{16}{5}.
0.01m=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{16}{5}-0.2
Subtract 0.2 from both sides.
0.01m=-\frac{1}{160}t^{2}+\frac{3}{10}t-\frac{17}{5}
Subtract 0.2 from -\frac{16}{5} to get -\frac{17}{5}.
0.01m=-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}
The equation is in standard form.
\frac{0.01m}{0.01}=\frac{-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}}{0.01}
Multiply both sides by 100.
m=\frac{-\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5}}{0.01}
Dividing by 0.01 undoes the multiplication by 0.01.
m=-\frac{5t^{2}}{8}+30t-340
Divide -\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5} by 0.01 by multiplying -\frac{t^{2}}{160}+\frac{3t}{10}-\frac{17}{5} by the reciprocal of 0.01.