Solve for x
x=0.05
x=-0.05
Graph
Share
Copied to clipboard
x^{2}=0.0025
Swap sides so that all variable terms are on the left hand side.
x^{2}-0.0025=0
Subtract 0.0025 from both sides.
\left(x-\frac{1}{20}\right)\left(x+\frac{1}{20}\right)=0
Consider x^{2}-0.0025. Rewrite x^{2}-0.0025 as x^{2}-\left(\frac{1}{20}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{20} x=-\frac{1}{20}
To find equation solutions, solve x-\frac{1}{20}=0 and x+\frac{1}{20}=0.
x^{2}=0.0025
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{20} x=-\frac{1}{20}
Take the square root of both sides of the equation.
x^{2}=0.0025
Swap sides so that all variable terms are on the left hand side.
x^{2}-0.0025=0
Subtract 0.0025 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-0.0025\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -0.0025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-0.0025\right)}}{2}
Square 0.
x=\frac{0±\sqrt{0.01}}{2}
Multiply -4 times -0.0025.
x=\frac{0±\frac{1}{10}}{2}
Take the square root of 0.01.
x=\frac{1}{20}
Now solve the equation x=\frac{0±\frac{1}{10}}{2} when ± is plus.
x=-\frac{1}{20}
Now solve the equation x=\frac{0±\frac{1}{10}}{2} when ± is minus.
x=\frac{1}{20} x=-\frac{1}{20}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}