Solve for x
x = \frac{20 \sqrt{499} + 140}{3} \approx 195.588719358
x=\frac{140-20\sqrt{499}}{3}\approx -102.255386025
Graph
Share
Copied to clipboard
0.0015x^{2}-0.14x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.14\right)±\sqrt{\left(-0.14\right)^{2}-4\times 0.0015\left(-30\right)}}{2\times 0.0015}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0015 for a, -0.14 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-4\times 0.0015\left(-30\right)}}{2\times 0.0015}
Square -0.14 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-0.006\left(-30\right)}}{2\times 0.0015}
Multiply -4 times 0.0015.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196+0.18}}{2\times 0.0015}
Multiply -0.006 times -30.
x=\frac{-\left(-0.14\right)±\sqrt{0.1996}}{2\times 0.0015}
Add 0.0196 to 0.18 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.14\right)±\frac{\sqrt{499}}{50}}{2\times 0.0015}
Take the square root of 0.1996.
x=\frac{0.14±\frac{\sqrt{499}}{50}}{2\times 0.0015}
The opposite of -0.14 is 0.14.
x=\frac{0.14±\frac{\sqrt{499}}{50}}{0.003}
Multiply 2 times 0.0015.
x=\frac{\sqrt{499}+7}{0.003\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{499}}{50}}{0.003} when ± is plus. Add 0.14 to \frac{\sqrt{499}}{50}.
x=\frac{20\sqrt{499}+140}{3}
Divide \frac{7+\sqrt{499}}{50} by 0.003 by multiplying \frac{7+\sqrt{499}}{50} by the reciprocal of 0.003.
x=\frac{7-\sqrt{499}}{0.003\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{499}}{50}}{0.003} when ± is minus. Subtract \frac{\sqrt{499}}{50} from 0.14.
x=\frac{140-20\sqrt{499}}{3}
Divide \frac{7-\sqrt{499}}{50} by 0.003 by multiplying \frac{7-\sqrt{499}}{50} by the reciprocal of 0.003.
x=\frac{20\sqrt{499}+140}{3} x=\frac{140-20\sqrt{499}}{3}
The equation is now solved.
0.0015x^{2}-0.14x-30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0015x^{2}-0.14x-30-\left(-30\right)=-\left(-30\right)
Add 30 to both sides of the equation.
0.0015x^{2}-0.14x=-\left(-30\right)
Subtracting -30 from itself leaves 0.
0.0015x^{2}-0.14x=30
Subtract -30 from 0.
\frac{0.0015x^{2}-0.14x}{0.0015}=\frac{30}{0.0015}
Divide both sides of the equation by 0.0015, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.14}{0.0015}\right)x=\frac{30}{0.0015}
Dividing by 0.0015 undoes the multiplication by 0.0015.
x^{2}-\frac{280}{3}x=\frac{30}{0.0015}
Divide -0.14 by 0.0015 by multiplying -0.14 by the reciprocal of 0.0015.
x^{2}-\frac{280}{3}x=20000
Divide 30 by 0.0015 by multiplying 30 by the reciprocal of 0.0015.
x^{2}-\frac{280}{3}x+\left(-\frac{140}{3}\right)^{2}=20000+\left(-\frac{140}{3}\right)^{2}
Divide -\frac{280}{3}, the coefficient of the x term, by 2 to get -\frac{140}{3}. Then add the square of -\frac{140}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{280}{3}x+\frac{19600}{9}=20000+\frac{19600}{9}
Square -\frac{140}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{280}{3}x+\frac{19600}{9}=\frac{199600}{9}
Add 20000 to \frac{19600}{9}.
\left(x-\frac{140}{3}\right)^{2}=\frac{199600}{9}
Factor x^{2}-\frac{280}{3}x+\frac{19600}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{140}{3}\right)^{2}}=\sqrt{\frac{199600}{9}}
Take the square root of both sides of the equation.
x-\frac{140}{3}=\frac{20\sqrt{499}}{3} x-\frac{140}{3}=-\frac{20\sqrt{499}}{3}
Simplify.
x=\frac{20\sqrt{499}+140}{3} x=\frac{140-20\sqrt{499}}{3}
Add \frac{140}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}