Solve for x
x = \frac{5 \sqrt{2333} + 85}{7} \approx 46.643670502
x=\frac{85-5\sqrt{2333}}{7}\approx -22.357956216
Graph
Share
Copied to clipboard
0.0007x^{2}-0.017x-0.73=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.017\right)±\sqrt{\left(-0.017\right)^{2}-4\times 0.0007\left(-0.73\right)}}{2\times 0.0007}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0007 for a, -0.017 for b, and -0.73 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.017\right)±\sqrt{0.000289-4\times 0.0007\left(-0.73\right)}}{2\times 0.0007}
Square -0.017 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.017\right)±\sqrt{0.000289-0.0028\left(-0.73\right)}}{2\times 0.0007}
Multiply -4 times 0.0007.
x=\frac{-\left(-0.017\right)±\sqrt{0.000289+0.002044}}{2\times 0.0007}
Multiply -0.0028 times -0.73 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.017\right)±\sqrt{0.002333}}{2\times 0.0007}
Add 0.000289 to 0.002044 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.017\right)±\frac{\sqrt{2333}}{1000}}{2\times 0.0007}
Take the square root of 0.002333.
x=\frac{0.017±\frac{\sqrt{2333}}{1000}}{2\times 0.0007}
The opposite of -0.017 is 0.017.
x=\frac{0.017±\frac{\sqrt{2333}}{1000}}{0.0014}
Multiply 2 times 0.0007.
x=\frac{\sqrt{2333}+17}{0.0014\times 1000}
Now solve the equation x=\frac{0.017±\frac{\sqrt{2333}}{1000}}{0.0014} when ± is plus. Add 0.017 to \frac{\sqrt{2333}}{1000}.
x=\frac{5\sqrt{2333}+85}{7}
Divide \frac{17+\sqrt{2333}}{1000} by 0.0014 by multiplying \frac{17+\sqrt{2333}}{1000} by the reciprocal of 0.0014.
x=\frac{17-\sqrt{2333}}{0.0014\times 1000}
Now solve the equation x=\frac{0.017±\frac{\sqrt{2333}}{1000}}{0.0014} when ± is minus. Subtract \frac{\sqrt{2333}}{1000} from 0.017.
x=\frac{85-5\sqrt{2333}}{7}
Divide \frac{17-\sqrt{2333}}{1000} by 0.0014 by multiplying \frac{17-\sqrt{2333}}{1000} by the reciprocal of 0.0014.
x=\frac{5\sqrt{2333}+85}{7} x=\frac{85-5\sqrt{2333}}{7}
The equation is now solved.
0.0007x^{2}-0.017x-0.73=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0007x^{2}-0.017x-0.73-\left(-0.73\right)=-\left(-0.73\right)
Add 0.73 to both sides of the equation.
0.0007x^{2}-0.017x=-\left(-0.73\right)
Subtracting -0.73 from itself leaves 0.
0.0007x^{2}-0.017x=0.73
Subtract -0.73 from 0.
\frac{0.0007x^{2}-0.017x}{0.0007}=\frac{0.73}{0.0007}
Divide both sides of the equation by 0.0007, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.017}{0.0007}\right)x=\frac{0.73}{0.0007}
Dividing by 0.0007 undoes the multiplication by 0.0007.
x^{2}-\frac{170}{7}x=\frac{0.73}{0.0007}
Divide -0.017 by 0.0007 by multiplying -0.017 by the reciprocal of 0.0007.
x^{2}-\frac{170}{7}x=\frac{7300}{7}
Divide 0.73 by 0.0007 by multiplying 0.73 by the reciprocal of 0.0007.
x^{2}-\frac{170}{7}x+\left(-\frac{85}{7}\right)^{2}=\frac{7300}{7}+\left(-\frac{85}{7}\right)^{2}
Divide -\frac{170}{7}, the coefficient of the x term, by 2 to get -\frac{85}{7}. Then add the square of -\frac{85}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{170}{7}x+\frac{7225}{49}=\frac{7300}{7}+\frac{7225}{49}
Square -\frac{85}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{170}{7}x+\frac{7225}{49}=\frac{58325}{49}
Add \frac{7300}{7} to \frac{7225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{85}{7}\right)^{2}=\frac{58325}{49}
Factor x^{2}-\frac{170}{7}x+\frac{7225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{85}{7}\right)^{2}}=\sqrt{\frac{58325}{49}}
Take the square root of both sides of the equation.
x-\frac{85}{7}=\frac{5\sqrt{2333}}{7} x-\frac{85}{7}=-\frac{5\sqrt{2333}}{7}
Simplify.
x=\frac{5\sqrt{2333}+85}{7} x=\frac{85-5\sqrt{2333}}{7}
Add \frac{85}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}