Solve for x
x=200\sqrt{673}-5000\approx 188.448708429
x=-200\sqrt{673}-5000\approx -10188.448708429
Graph
Share
Copied to clipboard
0.0001x^{2}+x-192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 0.0001\left(-192\right)}}{2\times 0.0001}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0001 for a, 1 for b, and -192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 0.0001\left(-192\right)}}{2\times 0.0001}
Square 1.
x=\frac{-1±\sqrt{1-0.0004\left(-192\right)}}{2\times 0.0001}
Multiply -4 times 0.0001.
x=\frac{-1±\sqrt{1+0.0768}}{2\times 0.0001}
Multiply -0.0004 times -192.
x=\frac{-1±\sqrt{1.0768}}{2\times 0.0001}
Add 1 to 0.0768.
x=\frac{-1±\frac{\sqrt{673}}{25}}{2\times 0.0001}
Take the square root of 1.0768.
x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002}
Multiply 2 times 0.0001.
x=\frac{\frac{\sqrt{673}}{25}-1}{0.0002}
Now solve the equation x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002} when ± is plus. Add -1 to \frac{\sqrt{673}}{25}.
x=200\sqrt{673}-5000
Divide -1+\frac{\sqrt{673}}{25} by 0.0002 by multiplying -1+\frac{\sqrt{673}}{25} by the reciprocal of 0.0002.
x=\frac{-\frac{\sqrt{673}}{25}-1}{0.0002}
Now solve the equation x=\frac{-1±\frac{\sqrt{673}}{25}}{0.0002} when ± is minus. Subtract \frac{\sqrt{673}}{25} from -1.
x=-200\sqrt{673}-5000
Divide -1-\frac{\sqrt{673}}{25} by 0.0002 by multiplying -1-\frac{\sqrt{673}}{25} by the reciprocal of 0.0002.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
The equation is now solved.
0.0001x^{2}+x-192=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0001x^{2}+x-192-\left(-192\right)=-\left(-192\right)
Add 192 to both sides of the equation.
0.0001x^{2}+x=-\left(-192\right)
Subtracting -192 from itself leaves 0.
0.0001x^{2}+x=192
Subtract -192 from 0.
\frac{0.0001x^{2}+x}{0.0001}=\frac{192}{0.0001}
Multiply both sides by 10000.
x^{2}+\frac{1}{0.0001}x=\frac{192}{0.0001}
Dividing by 0.0001 undoes the multiplication by 0.0001.
x^{2}+10000x=\frac{192}{0.0001}
Divide 1 by 0.0001 by multiplying 1 by the reciprocal of 0.0001.
x^{2}+10000x=1920000
Divide 192 by 0.0001 by multiplying 192 by the reciprocal of 0.0001.
x^{2}+10000x+5000^{2}=1920000+5000^{2}
Divide 10000, the coefficient of the x term, by 2 to get 5000. Then add the square of 5000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10000x+25000000=1920000+25000000
Square 5000.
x^{2}+10000x+25000000=26920000
Add 1920000 to 25000000.
\left(x+5000\right)^{2}=26920000
Factor x^{2}+10000x+25000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5000\right)^{2}}=\sqrt{26920000}
Take the square root of both sides of the equation.
x+5000=200\sqrt{673} x+5000=-200\sqrt{673}
Simplify.
x=200\sqrt{673}-5000 x=-200\sqrt{673}-5000
Subtract 5000 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}