Solve for x
x=100\sqrt{10003}-10000\approx 1.499887517
x=-100\sqrt{10003}-10000\approx -20001.499887517
Graph
Share
Copied to clipboard
0.0001x^{2}+2x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 0.0001\left(-3\right)}}{2\times 0.0001}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0001 for a, 2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 0.0001\left(-3\right)}}{2\times 0.0001}
Square 2.
x=\frac{-2±\sqrt{4-0.0004\left(-3\right)}}{2\times 0.0001}
Multiply -4 times 0.0001.
x=\frac{-2±\sqrt{4+0.0012}}{2\times 0.0001}
Multiply -0.0004 times -3.
x=\frac{-2±\sqrt{4.0012}}{2\times 0.0001}
Add 4 to 0.0012.
x=\frac{-2±\frac{\sqrt{10003}}{50}}{2\times 0.0001}
Take the square root of 4.0012.
x=\frac{-2±\frac{\sqrt{10003}}{50}}{0.0002}
Multiply 2 times 0.0001.
x=\frac{\frac{\sqrt{10003}}{50}-2}{0.0002}
Now solve the equation x=\frac{-2±\frac{\sqrt{10003}}{50}}{0.0002} when ± is plus. Add -2 to \frac{\sqrt{10003}}{50}.
x=100\sqrt{10003}-10000
Divide -2+\frac{\sqrt{10003}}{50} by 0.0002 by multiplying -2+\frac{\sqrt{10003}}{50} by the reciprocal of 0.0002.
x=\frac{-\frac{\sqrt{10003}}{50}-2}{0.0002}
Now solve the equation x=\frac{-2±\frac{\sqrt{10003}}{50}}{0.0002} when ± is minus. Subtract \frac{\sqrt{10003}}{50} from -2.
x=-100\sqrt{10003}-10000
Divide -2-\frac{\sqrt{10003}}{50} by 0.0002 by multiplying -2-\frac{\sqrt{10003}}{50} by the reciprocal of 0.0002.
x=100\sqrt{10003}-10000 x=-100\sqrt{10003}-10000
The equation is now solved.
0.0001x^{2}+2x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0001x^{2}+2x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
0.0001x^{2}+2x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
0.0001x^{2}+2x=3
Subtract -3 from 0.
\frac{0.0001x^{2}+2x}{0.0001}=\frac{3}{0.0001}
Multiply both sides by 10000.
x^{2}+\frac{2}{0.0001}x=\frac{3}{0.0001}
Dividing by 0.0001 undoes the multiplication by 0.0001.
x^{2}+20000x=\frac{3}{0.0001}
Divide 2 by 0.0001 by multiplying 2 by the reciprocal of 0.0001.
x^{2}+20000x=30000
Divide 3 by 0.0001 by multiplying 3 by the reciprocal of 0.0001.
x^{2}+20000x+10000^{2}=30000+10000^{2}
Divide 20000, the coefficient of the x term, by 2 to get 10000. Then add the square of 10000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20000x+100000000=30000+100000000
Square 10000.
x^{2}+20000x+100000000=100030000
Add 30000 to 100000000.
\left(x+10000\right)^{2}=100030000
Factor x^{2}+20000x+100000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10000\right)^{2}}=\sqrt{100030000}
Take the square root of both sides of the equation.
x+10000=100\sqrt{10003} x+10000=-100\sqrt{10003}
Simplify.
x=100\sqrt{10003}-10000 x=-100\sqrt{10003}-10000
Subtract 10000 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}