Solve for x (complex solution)
x=\frac{-1+\sqrt{26}i}{9}\approx -0.111111111+0.566557724i
x=\frac{-\sqrt{26}i-1}{9}\approx -0.111111111-0.566557724i
Graph
Share
Copied to clipboard
9x^{2}+2x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-2±\sqrt{2^{2}-4\times 9\times 3}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 9\times 3}}{2\times 9}
Square 2.
x=\frac{-2±\sqrt{4-36\times 3}}{2\times 9}
Multiply -4 times 9.
x=\frac{-2±\sqrt{4-108}}{2\times 9}
Multiply -36 times 3.
x=\frac{-2±\sqrt{-104}}{2\times 9}
Add 4 to -108.
x=\frac{-2±2\sqrt{26}i}{2\times 9}
Take the square root of -104.
x=\frac{-2±2\sqrt{26}i}{18}
Multiply 2 times 9.
x=\frac{-2+2\sqrt{26}i}{18}
Now solve the equation x=\frac{-2±2\sqrt{26}i}{18} when ± is plus. Add -2 to 2i\sqrt{26}.
x=\frac{-1+\sqrt{26}i}{9}
Divide -2+2i\sqrt{26} by 18.
x=\frac{-2\sqrt{26}i-2}{18}
Now solve the equation x=\frac{-2±2\sqrt{26}i}{18} when ± is minus. Subtract 2i\sqrt{26} from -2.
x=\frac{-\sqrt{26}i-1}{9}
Divide -2-2i\sqrt{26} by 18.
x=\frac{-1+\sqrt{26}i}{9} x=\frac{-\sqrt{26}i-1}{9}
The equation is now solved.
9x^{2}+2x+3=0
Swap sides so that all variable terms are on the left hand side.
9x^{2}+2x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}+2x}{9}=-\frac{3}{9}
Divide both sides by 9.
x^{2}+\frac{2}{9}x=-\frac{3}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{9}x=-\frac{1}{3}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{1}{3}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{26}{81}
Add -\frac{1}{3} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=-\frac{26}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{-\frac{26}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{\sqrt{26}i}{9} x+\frac{1}{9}=-\frac{\sqrt{26}i}{9}
Simplify.
x=\frac{-1+\sqrt{26}i}{9} x=\frac{-\sqrt{26}i-1}{9}
Subtract \frac{1}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}