Solve for x (complex solution)
x=\frac{18+\sqrt{701}i}{25}\approx 0.72+1.059056184i
x=\frac{-\sqrt{701}i+18}{25}\approx 0.72-1.059056184i
Graph
Share
Copied to clipboard
25x^{2}-36x+41=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 25\times 41}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -36 for b, and 41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 25\times 41}}{2\times 25}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-100\times 41}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-36\right)±\sqrt{1296-4100}}{2\times 25}
Multiply -100 times 41.
x=\frac{-\left(-36\right)±\sqrt{-2804}}{2\times 25}
Add 1296 to -4100.
x=\frac{-\left(-36\right)±2\sqrt{701}i}{2\times 25}
Take the square root of -2804.
x=\frac{36±2\sqrt{701}i}{2\times 25}
The opposite of -36 is 36.
x=\frac{36±2\sqrt{701}i}{50}
Multiply 2 times 25.
x=\frac{36+2\sqrt{701}i}{50}
Now solve the equation x=\frac{36±2\sqrt{701}i}{50} when ± is plus. Add 36 to 2i\sqrt{701}.
x=\frac{18+\sqrt{701}i}{25}
Divide 36+2i\sqrt{701} by 50.
x=\frac{-2\sqrt{701}i+36}{50}
Now solve the equation x=\frac{36±2\sqrt{701}i}{50} when ± is minus. Subtract 2i\sqrt{701} from 36.
x=\frac{-\sqrt{701}i+18}{25}
Divide 36-2i\sqrt{701} by 50.
x=\frac{18+\sqrt{701}i}{25} x=\frac{-\sqrt{701}i+18}{25}
The equation is now solved.
25x^{2}-36x+41=0
Swap sides so that all variable terms are on the left hand side.
25x^{2}-36x=-41
Subtract 41 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-36x}{25}=-\frac{41}{25}
Divide both sides by 25.
x^{2}-\frac{36}{25}x=-\frac{41}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{36}{25}x+\left(-\frac{18}{25}\right)^{2}=-\frac{41}{25}+\left(-\frac{18}{25}\right)^{2}
Divide -\frac{36}{25}, the coefficient of the x term, by 2 to get -\frac{18}{25}. Then add the square of -\frac{18}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{36}{25}x+\frac{324}{625}=-\frac{41}{25}+\frac{324}{625}
Square -\frac{18}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{36}{25}x+\frac{324}{625}=-\frac{701}{625}
Add -\frac{41}{25} to \frac{324}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{18}{25}\right)^{2}=-\frac{701}{625}
Factor x^{2}-\frac{36}{25}x+\frac{324}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{18}{25}\right)^{2}}=\sqrt{-\frac{701}{625}}
Take the square root of both sides of the equation.
x-\frac{18}{25}=\frac{\sqrt{701}i}{25} x-\frac{18}{25}=-\frac{\sqrt{701}i}{25}
Simplify.
x=\frac{18+\sqrt{701}i}{25} x=\frac{-\sqrt{701}i+18}{25}
Add \frac{18}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}