Solve for x
x=3
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
12x^{2}-57x+63=0
Swap sides so that all variable terms are on the left hand side.
4x^{2}-19x+21=0
Divide both sides by 3.
a+b=-19 ab=4\times 21=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+21. To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-12 b=-7
The solution is the pair that gives sum -19.
\left(4x^{2}-12x\right)+\left(-7x+21\right)
Rewrite 4x^{2}-19x+21 as \left(4x^{2}-12x\right)+\left(-7x+21\right).
4x\left(x-3\right)-7\left(x-3\right)
Factor out 4x in the first and -7 in the second group.
\left(x-3\right)\left(4x-7\right)
Factor out common term x-3 by using distributive property.
x=3 x=\frac{7}{4}
To find equation solutions, solve x-3=0 and 4x-7=0.
12x^{2}-57x+63=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-57\right)±\sqrt{\left(-57\right)^{2}-4\times 12\times 63}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -57 for b, and 63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-57\right)±\sqrt{3249-4\times 12\times 63}}{2\times 12}
Square -57.
x=\frac{-\left(-57\right)±\sqrt{3249-48\times 63}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-57\right)±\sqrt{3249-3024}}{2\times 12}
Multiply -48 times 63.
x=\frac{-\left(-57\right)±\sqrt{225}}{2\times 12}
Add 3249 to -3024.
x=\frac{-\left(-57\right)±15}{2\times 12}
Take the square root of 225.
x=\frac{57±15}{2\times 12}
The opposite of -57 is 57.
x=\frac{57±15}{24}
Multiply 2 times 12.
x=\frac{72}{24}
Now solve the equation x=\frac{57±15}{24} when ± is plus. Add 57 to 15.
x=3
Divide 72 by 24.
x=\frac{42}{24}
Now solve the equation x=\frac{57±15}{24} when ± is minus. Subtract 15 from 57.
x=\frac{7}{4}
Reduce the fraction \frac{42}{24} to lowest terms by extracting and canceling out 6.
x=3 x=\frac{7}{4}
The equation is now solved.
12x^{2}-57x+63=0
Swap sides so that all variable terms are on the left hand side.
12x^{2}-57x=-63
Subtract 63 from both sides. Anything subtracted from zero gives its negation.
\frac{12x^{2}-57x}{12}=-\frac{63}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{57}{12}\right)x=-\frac{63}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{19}{4}x=-\frac{63}{12}
Reduce the fraction \frac{-57}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{19}{4}x=-\frac{21}{4}
Reduce the fraction \frac{-63}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{19}{4}x+\left(-\frac{19}{8}\right)^{2}=-\frac{21}{4}+\left(-\frac{19}{8}\right)^{2}
Divide -\frac{19}{4}, the coefficient of the x term, by 2 to get -\frac{19}{8}. Then add the square of -\frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{4}x+\frac{361}{64}=-\frac{21}{4}+\frac{361}{64}
Square -\frac{19}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{4}x+\frac{361}{64}=\frac{25}{64}
Add -\frac{21}{4} to \frac{361}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{8}\right)^{2}=\frac{25}{64}
Factor x^{2}-\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x-\frac{19}{8}=\frac{5}{8} x-\frac{19}{8}=-\frac{5}{8}
Simplify.
x=3 x=\frac{7}{4}
Add \frac{19}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}