Solve for x
x = \frac{\sqrt{2} + 1}{2} \approx 1.207106781
x=\frac{1-\sqrt{2}}{2}\approx -0.207106781
Graph
Share
Copied to clipboard
-4x^{2}+4x+1=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-4±\sqrt{4^{2}-4\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-4\right)}}{2\left(-4\right)}
Square 4.
x=\frac{-4±\sqrt{16+16}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-4±\sqrt{32}}{2\left(-4\right)}
Add 16 to 16.
x=\frac{-4±4\sqrt{2}}{2\left(-4\right)}
Take the square root of 32.
x=\frac{-4±4\sqrt{2}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{2}-4}{-8}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-8} when ± is plus. Add -4 to 4\sqrt{2}.
x=\frac{1-\sqrt{2}}{2}
Divide -4+4\sqrt{2} by -8.
x=\frac{-4\sqrt{2}-4}{-8}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-8} when ± is minus. Subtract 4\sqrt{2} from -4.
x=\frac{\sqrt{2}+1}{2}
Divide -4-4\sqrt{2} by -8.
x=\frac{1-\sqrt{2}}{2} x=\frac{\sqrt{2}+1}{2}
The equation is now solved.
-4x^{2}+4x+1=0
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+4x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-4x^{2}+4x}{-4}=-\frac{1}{-4}
Divide both sides by -4.
x^{2}+\frac{4}{-4}x=-\frac{1}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-x=-\frac{1}{-4}
Divide 4 by -4.
x^{2}-x=\frac{1}{4}
Divide -1 by -4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1}{2}
Add \frac{1}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{2}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{2}}{2} x-\frac{1}{2}=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}+1}{2} x=\frac{1-\sqrt{2}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}