Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}+4x+1=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-4±\sqrt{4^{2}-4\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-4\right)}}{2\left(-4\right)}
Square 4.
x=\frac{-4±\sqrt{16+16}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-4±\sqrt{32}}{2\left(-4\right)}
Add 16 to 16.
x=\frac{-4±4\sqrt{2}}{2\left(-4\right)}
Take the square root of 32.
x=\frac{-4±4\sqrt{2}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{2}-4}{-8}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-8} when ± is plus. Add -4 to 4\sqrt{2}.
x=\frac{1-\sqrt{2}}{2}
Divide -4+4\sqrt{2} by -8.
x=\frac{-4\sqrt{2}-4}{-8}
Now solve the equation x=\frac{-4±4\sqrt{2}}{-8} when ± is minus. Subtract 4\sqrt{2} from -4.
x=\frac{\sqrt{2}+1}{2}
Divide -4-4\sqrt{2} by -8.
x=\frac{1-\sqrt{2}}{2} x=\frac{\sqrt{2}+1}{2}
The equation is now solved.
-4x^{2}+4x+1=0
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+4x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{-4x^{2}+4x}{-4}=-\frac{1}{-4}
Divide both sides by -4.
x^{2}+\frac{4}{-4}x=-\frac{1}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-x=-\frac{1}{-4}
Divide 4 by -4.
x^{2}-x=\frac{1}{4}
Divide -1 by -4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=\frac{1+1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1}{2}
Add \frac{1}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{2}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{2}}{2} x-\frac{1}{2}=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}+1}{2} x=\frac{1-\sqrt{2}}{2}
Add \frac{1}{2} to both sides of the equation.