Solve for t
t = \frac{5 \sqrt{5} + 11}{4} \approx 5.545084972
t=\frac{11-5\sqrt{5}}{4}\approx -0.045084972
Share
Copied to clipboard
-16t^{2}+88t+4=0
Swap sides so that all variable terms are on the left hand side.
t=\frac{-88±\sqrt{88^{2}-4\left(-16\right)\times 4}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 88 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-88±\sqrt{7744-4\left(-16\right)\times 4}}{2\left(-16\right)}
Square 88.
t=\frac{-88±\sqrt{7744+64\times 4}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-88±\sqrt{7744+256}}{2\left(-16\right)}
Multiply 64 times 4.
t=\frac{-88±\sqrt{8000}}{2\left(-16\right)}
Add 7744 to 256.
t=\frac{-88±40\sqrt{5}}{2\left(-16\right)}
Take the square root of 8000.
t=\frac{-88±40\sqrt{5}}{-32}
Multiply 2 times -16.
t=\frac{40\sqrt{5}-88}{-32}
Now solve the equation t=\frac{-88±40\sqrt{5}}{-32} when ± is plus. Add -88 to 40\sqrt{5}.
t=\frac{11-5\sqrt{5}}{4}
Divide -88+40\sqrt{5} by -32.
t=\frac{-40\sqrt{5}-88}{-32}
Now solve the equation t=\frac{-88±40\sqrt{5}}{-32} when ± is minus. Subtract 40\sqrt{5} from -88.
t=\frac{5\sqrt{5}+11}{4}
Divide -88-40\sqrt{5} by -32.
t=\frac{11-5\sqrt{5}}{4} t=\frac{5\sqrt{5}+11}{4}
The equation is now solved.
-16t^{2}+88t+4=0
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+88t=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{-16t^{2}+88t}{-16}=-\frac{4}{-16}
Divide both sides by -16.
t^{2}+\frac{88}{-16}t=-\frac{4}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{11}{2}t=-\frac{4}{-16}
Reduce the fraction \frac{88}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{11}{2}t=\frac{1}{4}
Reduce the fraction \frac{-4}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{11}{2}t+\left(-\frac{11}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{11}{2}t+\frac{121}{16}=\frac{1}{4}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{11}{2}t+\frac{121}{16}=\frac{125}{16}
Add \frac{1}{4} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{11}{4}\right)^{2}=\frac{125}{16}
Factor t^{2}-\frac{11}{2}t+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{4}\right)^{2}}=\sqrt{\frac{125}{16}}
Take the square root of both sides of the equation.
t-\frac{11}{4}=\frac{5\sqrt{5}}{4} t-\frac{11}{4}=-\frac{5\sqrt{5}}{4}
Simplify.
t=\frac{5\sqrt{5}+11}{4} t=\frac{11-5\sqrt{5}}{4}
Add \frac{11}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}