Solve for y
y=\frac{9+12x^{2}-8x^{7}}{8\left(2x+1\right)x^{4}}
x\neq 0\text{ and }x\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
-x^{7}-2yx^{5}-yx^{4}+1.5x^{2}+\frac{9}{8}=0
Swap sides so that all variable terms are on the left hand side.
-x^{7}-2yx^{5}-yx^{4}+\frac{9}{8}=-1.5x^{2}
Subtract 1.5x^{2} from both sides. Anything subtracted from zero gives its negation.
-x^{7}-2yx^{5}-yx^{4}=-1.5x^{2}-\frac{9}{8}
Subtract \frac{9}{8} from both sides.
-2yx^{5}-yx^{4}=-1.5x^{2}-\frac{9}{8}+x^{7}
Add x^{7} to both sides.
\left(-2x^{5}-x^{4}\right)y=-1.5x^{2}-\frac{9}{8}+x^{7}
Combine all terms containing y.
\left(-2x^{5}-x^{4}\right)y=x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}
The equation is in standard form.
\frac{\left(-2x^{5}-x^{4}\right)y}{-2x^{5}-x^{4}}=\frac{x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}}{-2x^{5}-x^{4}}
Divide both sides by -2x^{5}-x^{4}.
y=\frac{x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}}{-2x^{5}-x^{4}}
Dividing by -2x^{5}-x^{4} undoes the multiplication by -2x^{5}-x^{4}.
y=-\frac{8x^{7}-12x^{2}-9}{8\left(2x+1\right)x^{4}}
Divide -\frac{3x^{2}}{2}-\frac{9}{8}+x^{7} by -2x^{5}-x^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}