Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{7}-2yx^{5}-yx^{4}+1.5x^{2}+\frac{9}{8}=0
Swap sides so that all variable terms are on the left hand side.
-x^{7}-2yx^{5}-yx^{4}+\frac{9}{8}=-1.5x^{2}
Subtract 1.5x^{2} from both sides. Anything subtracted from zero gives its negation.
-x^{7}-2yx^{5}-yx^{4}=-1.5x^{2}-\frac{9}{8}
Subtract \frac{9}{8} from both sides.
-2yx^{5}-yx^{4}=-1.5x^{2}-\frac{9}{8}+x^{7}
Add x^{7} to both sides.
\left(-2x^{5}-x^{4}\right)y=-1.5x^{2}-\frac{9}{8}+x^{7}
Combine all terms containing y.
\left(-2x^{5}-x^{4}\right)y=x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}
The equation is in standard form.
\frac{\left(-2x^{5}-x^{4}\right)y}{-2x^{5}-x^{4}}=\frac{x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}}{-2x^{5}-x^{4}}
Divide both sides by -2x^{5}-x^{4}.
y=\frac{x^{7}-\frac{3x^{2}}{2}-\frac{9}{8}}{-2x^{5}-x^{4}}
Dividing by -2x^{5}-x^{4} undoes the multiplication by -2x^{5}-x^{4}.
y=-\frac{8x^{7}-12x^{2}-9}{8\left(2x+1\right)x^{4}}
Divide -\frac{3x^{2}}{2}-\frac{9}{8}+x^{7} by -2x^{5}-x^{4}.