Solve for x
x=\frac{\sqrt{42}}{2}+3\approx 6.240370349
x=-\frac{\sqrt{42}}{2}+3\approx -0.240370349
Graph
Share
Copied to clipboard
-\frac{1}{3}x^{2}+2x+\frac{1}{2}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{3}\right)\times \frac{1}{2}}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, 2 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{3}\right)\times \frac{1}{2}}}{2\left(-\frac{1}{3}\right)}
Square 2.
x=\frac{-2±\sqrt{4+\frac{4}{3}\times \frac{1}{2}}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-2±\sqrt{4+\frac{2}{3}}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-2±\sqrt{\frac{14}{3}}}{2\left(-\frac{1}{3}\right)}
Add 4 to \frac{2}{3}.
x=\frac{-2±\frac{\sqrt{42}}{3}}{2\left(-\frac{1}{3}\right)}
Take the square root of \frac{14}{3}.
x=\frac{-2±\frac{\sqrt{42}}{3}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{\frac{\sqrt{42}}{3}-2}{-\frac{2}{3}}
Now solve the equation x=\frac{-2±\frac{\sqrt{42}}{3}}{-\frac{2}{3}} when ± is plus. Add -2 to \frac{\sqrt{42}}{3}.
x=-\frac{\sqrt{42}}{2}+3
Divide -2+\frac{\sqrt{42}}{3} by -\frac{2}{3} by multiplying -2+\frac{\sqrt{42}}{3} by the reciprocal of -\frac{2}{3}.
x=\frac{-\frac{\sqrt{42}}{3}-2}{-\frac{2}{3}}
Now solve the equation x=\frac{-2±\frac{\sqrt{42}}{3}}{-\frac{2}{3}} when ± is minus. Subtract \frac{\sqrt{42}}{3} from -2.
x=\frac{\sqrt{42}}{2}+3
Divide -2-\frac{\sqrt{42}}{3} by -\frac{2}{3} by multiplying -2-\frac{\sqrt{42}}{3} by the reciprocal of -\frac{2}{3}.
x=-\frac{\sqrt{42}}{2}+3 x=\frac{\sqrt{42}}{2}+3
The equation is now solved.
-\frac{1}{3}x^{2}+2x+\frac{1}{2}=0
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}x^{2}+2x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{1}{3}x^{2}+2x}{-\frac{1}{3}}=-\frac{\frac{1}{2}}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\frac{2}{-\frac{1}{3}}x=-\frac{\frac{1}{2}}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}-6x=-\frac{\frac{1}{2}}{-\frac{1}{3}}
Divide 2 by -\frac{1}{3} by multiplying 2 by the reciprocal of -\frac{1}{3}.
x^{2}-6x=\frac{3}{2}
Divide -\frac{1}{2} by -\frac{1}{3} by multiplying -\frac{1}{2} by the reciprocal of -\frac{1}{3}.
x^{2}-6x+\left(-3\right)^{2}=\frac{3}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=\frac{3}{2}+9
Square -3.
x^{2}-6x+9=\frac{21}{2}
Add \frac{3}{2} to 9.
\left(x-3\right)^{2}=\frac{21}{2}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{21}{2}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{42}}{2} x-3=-\frac{\sqrt{42}}{2}
Simplify.
x=\frac{\sqrt{42}}{2}+3 x=-\frac{\sqrt{42}}{2}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}