Solve for x
x = \frac{10 \sqrt{5402} - 10}{491} \approx 1.476543774
x=\frac{-10\sqrt{5402}-10}{491}\approx -1.517276971
Graph
Share
Copied to clipboard
0=-\frac{491}{200}x^{2}-0.1x+5.5
Multiply -\frac{1}{2} and 4.91 to get -\frac{491}{200}.
-\frac{491}{200}x^{2}-0.1x+5.5=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-0.1\right)±\sqrt{\left(-0.1\right)^{2}-4\left(-\frac{491}{200}\right)\times 5.5}}{2\left(-\frac{491}{200}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{491}{200} for a, -0.1 for b, and 5.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.1\right)±\sqrt{0.01-4\left(-\frac{491}{200}\right)\times 5.5}}{2\left(-\frac{491}{200}\right)}
Square -0.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.1\right)±\sqrt{0.01+\frac{491}{50}\times 5.5}}{2\left(-\frac{491}{200}\right)}
Multiply -4 times -\frac{491}{200}.
x=\frac{-\left(-0.1\right)±\sqrt{\frac{1+5401}{100}}}{2\left(-\frac{491}{200}\right)}
Multiply \frac{491}{50} times 5.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.1\right)±\sqrt{\frac{2701}{50}}}{2\left(-\frac{491}{200}\right)}
Add 0.01 to \frac{5401}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.1\right)±\frac{\sqrt{5402}}{10}}{2\left(-\frac{491}{200}\right)}
Take the square root of \frac{2701}{50}.
x=\frac{0.1±\frac{\sqrt{5402}}{10}}{2\left(-\frac{491}{200}\right)}
The opposite of -0.1 is 0.1.
x=\frac{0.1±\frac{\sqrt{5402}}{10}}{-\frac{491}{100}}
Multiply 2 times -\frac{491}{200}.
x=\frac{\sqrt{5402}+1}{-\frac{491}{100}\times 10}
Now solve the equation x=\frac{0.1±\frac{\sqrt{5402}}{10}}{-\frac{491}{100}} when ± is plus. Add 0.1 to \frac{\sqrt{5402}}{10}.
x=\frac{-10\sqrt{5402}-10}{491}
Divide \frac{1+\sqrt{5402}}{10} by -\frac{491}{100} by multiplying \frac{1+\sqrt{5402}}{10} by the reciprocal of -\frac{491}{100}.
x=\frac{1-\sqrt{5402}}{-\frac{491}{100}\times 10}
Now solve the equation x=\frac{0.1±\frac{\sqrt{5402}}{10}}{-\frac{491}{100}} when ± is minus. Subtract \frac{\sqrt{5402}}{10} from 0.1.
x=\frac{10\sqrt{5402}-10}{491}
Divide \frac{1-\sqrt{5402}}{10} by -\frac{491}{100} by multiplying \frac{1-\sqrt{5402}}{10} by the reciprocal of -\frac{491}{100}.
x=\frac{-10\sqrt{5402}-10}{491} x=\frac{10\sqrt{5402}-10}{491}
The equation is now solved.
0=-\frac{491}{200}x^{2}-0.1x+5.5
Multiply -\frac{1}{2} and 4.91 to get -\frac{491}{200}.
-\frac{491}{200}x^{2}-0.1x+5.5=0
Swap sides so that all variable terms are on the left hand side.
-\frac{491}{200}x^{2}-0.1x=-5.5
Subtract 5.5 from both sides. Anything subtracted from zero gives its negation.
-\frac{491}{200}x^{2}-0.1x=-\frac{11}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{491}{200}x^{2}-0.1x}{-\frac{491}{200}}=-\frac{\frac{11}{2}}{-\frac{491}{200}}
Divide both sides of the equation by -\frac{491}{200}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.1}{-\frac{491}{200}}\right)x=-\frac{\frac{11}{2}}{-\frac{491}{200}}
Dividing by -\frac{491}{200} undoes the multiplication by -\frac{491}{200}.
x^{2}+\frac{20}{491}x=-\frac{\frac{11}{2}}{-\frac{491}{200}}
Divide -0.1 by -\frac{491}{200} by multiplying -0.1 by the reciprocal of -\frac{491}{200}.
x^{2}+\frac{20}{491}x=\frac{1100}{491}
Divide -\frac{11}{2} by -\frac{491}{200} by multiplying -\frac{11}{2} by the reciprocal of -\frac{491}{200}.
x^{2}+\frac{20}{491}x+\left(\frac{10}{491}\right)^{2}=\frac{1100}{491}+\left(\frac{10}{491}\right)^{2}
Divide \frac{20}{491}, the coefficient of the x term, by 2 to get \frac{10}{491}. Then add the square of \frac{10}{491} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{491}x+\frac{100}{241081}=\frac{1100}{491}+\frac{100}{241081}
Square \frac{10}{491} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{491}x+\frac{100}{241081}=\frac{540200}{241081}
Add \frac{1100}{491} to \frac{100}{241081} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{10}{491}\right)^{2}=\frac{540200}{241081}
Factor x^{2}+\frac{20}{491}x+\frac{100}{241081}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{491}\right)^{2}}=\sqrt{\frac{540200}{241081}}
Take the square root of both sides of the equation.
x+\frac{10}{491}=\frac{10\sqrt{5402}}{491} x+\frac{10}{491}=-\frac{10\sqrt{5402}}{491}
Simplify.
x=\frac{10\sqrt{5402}-10}{491} x=\frac{-10\sqrt{5402}-10}{491}
Subtract \frac{10}{491} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}