Solve for x
x=\frac{500\sqrt{39}}{39}+80\approx 160.064076903
x=-\frac{500\sqrt{39}}{39}+80\approx -0.064076903
Graph
Share
Copied to clipboard
0=-0.000234\left(x^{2}-160x+6400\right)+1.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-80\right)^{2}.
0=-0.000234x^{2}+0.03744x-1.4976+1.5
Use the distributive property to multiply -0.000234 by x^{2}-160x+6400.
0=-0.000234x^{2}+0.03744x+0.0024
Add -1.4976 and 1.5 to get 0.0024.
-0.000234x^{2}+0.03744x+0.0024=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-0.03744±\sqrt{0.03744^{2}-4\left(-0.000234\right)\times 0.0024}}{2\left(-0.000234\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.000234 for a, 0.03744 for b, and 0.0024 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.03744±\sqrt{0.0014017536-4\left(-0.000234\right)\times 0.0024}}{2\left(-0.000234\right)}
Square 0.03744 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.03744±\sqrt{0.0014017536+0.000936\times 0.0024}}{2\left(-0.000234\right)}
Multiply -4 times -0.000234.
x=\frac{-0.03744±\sqrt{0.0014017536+0.0000022464}}{2\left(-0.000234\right)}
Multiply 0.000936 times 0.0024 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.03744±\sqrt{0.001404}}{2\left(-0.000234\right)}
Add 0.0014017536 to 0.0000022464 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.03744±\frac{3\sqrt{39}}{500}}{2\left(-0.000234\right)}
Take the square root of 0.001404.
x=\frac{-0.03744±\frac{3\sqrt{39}}{500}}{-0.000468}
Multiply 2 times -0.000234.
x=\frac{\frac{3\sqrt{39}}{500}-\frac{117}{3125}}{-0.000468}
Now solve the equation x=\frac{-0.03744±\frac{3\sqrt{39}}{500}}{-0.000468} when ± is plus. Add -0.03744 to \frac{3\sqrt{39}}{500}.
x=-\frac{500\sqrt{39}}{39}+80
Divide -\frac{117}{3125}+\frac{3\sqrt{39}}{500} by -0.000468 by multiplying -\frac{117}{3125}+\frac{3\sqrt{39}}{500} by the reciprocal of -0.000468.
x=\frac{-\frac{3\sqrt{39}}{500}-\frac{117}{3125}}{-0.000468}
Now solve the equation x=\frac{-0.03744±\frac{3\sqrt{39}}{500}}{-0.000468} when ± is minus. Subtract \frac{3\sqrt{39}}{500} from -0.03744.
x=\frac{500\sqrt{39}}{39}+80
Divide -\frac{117}{3125}-\frac{3\sqrt{39}}{500} by -0.000468 by multiplying -\frac{117}{3125}-\frac{3\sqrt{39}}{500} by the reciprocal of -0.000468.
x=-\frac{500\sqrt{39}}{39}+80 x=\frac{500\sqrt{39}}{39}+80
The equation is now solved.
0=-0.000234\left(x^{2}-160x+6400\right)+1.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-80\right)^{2}.
0=-0.000234x^{2}+0.03744x-1.4976+1.5
Use the distributive property to multiply -0.000234 by x^{2}-160x+6400.
0=-0.000234x^{2}+0.03744x+0.0024
Add -1.4976 and 1.5 to get 0.0024.
-0.000234x^{2}+0.03744x+0.0024=0
Swap sides so that all variable terms are on the left hand side.
-0.000234x^{2}+0.03744x=-0.0024
Subtract 0.0024 from both sides. Anything subtracted from zero gives its negation.
\frac{-0.000234x^{2}+0.03744x}{-0.000234}=-\frac{0.0024}{-0.000234}
Divide both sides of the equation by -0.000234, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{0.03744}{-0.000234}x=-\frac{0.0024}{-0.000234}
Dividing by -0.000234 undoes the multiplication by -0.000234.
x^{2}-160x=-\frac{0.0024}{-0.000234}
Divide 0.03744 by -0.000234 by multiplying 0.03744 by the reciprocal of -0.000234.
x^{2}-160x=\frac{400}{39}
Divide -0.0024 by -0.000234 by multiplying -0.0024 by the reciprocal of -0.000234.
x^{2}-160x+\left(-80\right)^{2}=\frac{400}{39}+\left(-80\right)^{2}
Divide -160, the coefficient of the x term, by 2 to get -80. Then add the square of -80 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-160x+6400=\frac{400}{39}+6400
Square -80.
x^{2}-160x+6400=\frac{250000}{39}
Add \frac{400}{39} to 6400.
\left(x-80\right)^{2}=\frac{250000}{39}
Factor x^{2}-160x+6400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-80\right)^{2}}=\sqrt{\frac{250000}{39}}
Take the square root of both sides of the equation.
x-80=\frac{500\sqrt{39}}{39} x-80=-\frac{500\sqrt{39}}{39}
Simplify.
x=\frac{500\sqrt{39}}{39}+80 x=-\frac{500\sqrt{39}}{39}+80
Add 80 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}