Solve for x
x = \frac{1000}{49} = 20\frac{20}{49} \approx 20.408163265
Graph
Share
Copied to clipboard
0=400+2\left(-9.8\right)x
Calculate 20 to the power of 2 and get 400.
0=400-19.6x
Multiply 2 and -9.8 to get -19.6.
400-19.6x=0
Swap sides so that all variable terms are on the left hand side.
-19.6x=-400
Subtract 400 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-400}{-19.6}
Divide both sides by -19.6.
x=\frac{-4000}{-196}
Expand \frac{-400}{-19.6} by multiplying both numerator and the denominator by 10.
x=\frac{1000}{49}
Reduce the fraction \frac{-4000}{-196} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}