Solve for x
x=7
x=1
Graph
Share
Copied to clipboard
0=\frac{1}{3}\left(x^{2}-8x+16\right)-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
0=\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}-3
Use the distributive property to multiply \frac{1}{3} by x^{2}-8x+16.
0=\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{7}{3}
Subtract 3 from \frac{16}{3} to get \frac{7}{3}.
\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{7}{3}=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\left(-\frac{8}{3}\right)^{2}-4\times \frac{1}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -\frac{8}{3} for b, and \frac{7}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}-4\times \frac{1}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}-\frac{4}{3}\times \frac{7}{3}}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64-28}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{4}}{2\times \frac{1}{3}}
Add \frac{64}{9} to -\frac{28}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{8}{3}\right)±2}{2\times \frac{1}{3}}
Take the square root of 4.
x=\frac{\frac{8}{3}±2}{2\times \frac{1}{3}}
The opposite of -\frac{8}{3} is \frac{8}{3}.
x=\frac{\frac{8}{3}±2}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{14}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{8}{3}±2}{\frac{2}{3}} when ± is plus. Add \frac{8}{3} to 2.
x=7
Divide \frac{14}{3} by \frac{2}{3} by multiplying \frac{14}{3} by the reciprocal of \frac{2}{3}.
x=\frac{\frac{2}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{8}{3}±2}{\frac{2}{3}} when ± is minus. Subtract 2 from \frac{8}{3}.
x=1
Divide \frac{2}{3} by \frac{2}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{3}.
x=7 x=1
The equation is now solved.
0=\frac{1}{3}\left(x^{2}-8x+16\right)-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
0=\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{16}{3}-3
Use the distributive property to multiply \frac{1}{3} by x^{2}-8x+16.
0=\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{7}{3}
Subtract 3 from \frac{16}{3} to get \frac{7}{3}.
\frac{1}{3}x^{2}-\frac{8}{3}x+\frac{7}{3}=0
Swap sides so that all variable terms are on the left hand side.
\frac{1}{3}x^{2}-\frac{8}{3}x=-\frac{7}{3}
Subtract \frac{7}{3} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{3}x^{2}-\frac{8}{3}x}{\frac{1}{3}}=-\frac{\frac{7}{3}}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{\frac{8}{3}}{\frac{1}{3}}\right)x=-\frac{\frac{7}{3}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-8x=-\frac{\frac{7}{3}}{\frac{1}{3}}
Divide -\frac{8}{3} by \frac{1}{3} by multiplying -\frac{8}{3} by the reciprocal of \frac{1}{3}.
x^{2}-8x=-7
Divide -\frac{7}{3} by \frac{1}{3} by multiplying -\frac{7}{3} by the reciprocal of \frac{1}{3}.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-7+16
Square -4.
x^{2}-8x+16=9
Add -7 to 16.
\left(x-4\right)^{2}=9
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-4=3 x-4=-3
Simplify.
x=7 x=1
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}