0,8 \times 4 - 0,75 : 0,25 + 1,5 \times 0,2 - 0,4 : 2
Evaluate
0,3
Factor
\frac{3}{2 \cdot 5} = 0.3
Share
Copied to clipboard
3,2-\frac{0,75}{0,25}+1,5\times 0,2-\frac{0,4}{2}
Multiply 0,8 and 4 to get 3,2.
3,2-\frac{75}{25}+1,5\times 0,2-\frac{0,4}{2}
Expand \frac{0,75}{0,25} by multiplying both numerator and the denominator by 100.
3,2-3+1,5\times 0,2-\frac{0,4}{2}
Divide 75 by 25 to get 3.
0,2+1,5\times 0,2-\frac{0,4}{2}
Subtract 3 from 3,2 to get 0,2.
0,2+0,3-\frac{0,4}{2}
Multiply 1,5 and 0,2 to get 0,3.
0,5-\frac{0,4}{2}
Add 0,2 and 0,3 to get 0,5.
0,5-\frac{4}{20}
Expand \frac{0,4}{2} by multiplying both numerator and the denominator by 10.
0,5-\frac{1}{5}
Reduce the fraction \frac{4}{20} to lowest terms by extracting and canceling out 4.
\frac{1}{2}-\frac{1}{5}
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{5}{10}-\frac{2}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{5-2}{10}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{10}
Subtract 2 from 5 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}