0,6 m ^ { 2 } - m n - ( m ^ { 2 } - 3 m + 1 ) - ( \frac { 1 } { 3 } m ^ { 2 } + m - 5 )
Evaluate
-mn-\frac{11m^{2}}{15}+2m+4
Expand
-mn-\frac{11m^{2}}{15}+2m+4
Share
Copied to clipboard
0,6m^{2}-mn-m^{2}+3m-1-\left(\frac{1}{3}m^{2}+m-5\right)
To find the opposite of m^{2}-3m+1, find the opposite of each term.
-0,4m^{2}-mn+3m-1-\left(\frac{1}{3}m^{2}+m-5\right)
Combine 0,6m^{2} and -m^{2} to get -0,4m^{2}.
-0,4m^{2}-mn+3m-1-\frac{1}{3}m^{2}-m+5
To find the opposite of \frac{1}{3}m^{2}+m-5, find the opposite of each term.
-\frac{11}{15}m^{2}-mn+3m-1-m+5
Combine -0,4m^{2} and -\frac{1}{3}m^{2} to get -\frac{11}{15}m^{2}.
-\frac{11}{15}m^{2}-mn+2m-1+5
Combine 3m and -m to get 2m.
-\frac{11}{15}m^{2}-mn+2m+4
Add -1 and 5 to get 4.
0,6m^{2}-mn-m^{2}+3m-1-\left(\frac{1}{3}m^{2}+m-5\right)
To find the opposite of m^{2}-3m+1, find the opposite of each term.
-0,4m^{2}-mn+3m-1-\left(\frac{1}{3}m^{2}+m-5\right)
Combine 0,6m^{2} and -m^{2} to get -0,4m^{2}.
-0,4m^{2}-mn+3m-1-\frac{1}{3}m^{2}-m+5
To find the opposite of \frac{1}{3}m^{2}+m-5, find the opposite of each term.
-\frac{11}{15}m^{2}-mn+3m-1-m+5
Combine -0,4m^{2} and -\frac{1}{3}m^{2} to get -\frac{11}{15}m^{2}.
-\frac{11}{15}m^{2}-mn+2m-1+5
Combine 3m and -m to get 2m.
-\frac{11}{15}m^{2}-mn+2m+4
Add -1 and 5 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}