0,5 - \frac { 1 } { 3 } \div ( 0,25 - \frac { 5 } { 12 } ) =
Evaluate
2,5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
0,5-\frac{\frac{1}{3}}{\frac{1}{4}-\frac{5}{12}}
Convert decimal number 0,25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
0,5-\frac{\frac{1}{3}}{\frac{3}{12}-\frac{5}{12}}
Least common multiple of 4 and 12 is 12. Convert \frac{1}{4} and \frac{5}{12} to fractions with denominator 12.
0,5-\frac{\frac{1}{3}}{\frac{3-5}{12}}
Since \frac{3}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
0,5-\frac{\frac{1}{3}}{\frac{-2}{12}}
Subtract 5 from 3 to get -2.
0,5-\frac{\frac{1}{3}}{-\frac{1}{6}}
Reduce the fraction \frac{-2}{12} to lowest terms by extracting and canceling out 2.
0,5-\frac{1}{3}\left(-6\right)
Divide \frac{1}{3} by -\frac{1}{6} by multiplying \frac{1}{3} by the reciprocal of -\frac{1}{6}.
0,5-\frac{-6}{3}
Multiply \frac{1}{3} and -6 to get \frac{-6}{3}.
0,5-\left(-2\right)
Divide -6 by 3 to get -2.
0,5+2
The opposite of -2 is 2.
2,5
Add 0,5 and 2 to get 2,5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}