Solve for x
x=\frac{3\sqrt{129}-35}{4}\approx -0.231637481
x=\frac{-3\sqrt{129}-35}{4}\approx -17.268362519
Graph
Share
Copied to clipboard
0=8+x\left(2x+35\right)
Anything times zero gives zero.
0=8+2x^{2}+35x
Use the distributive property to multiply x by 2x+35.
8+2x^{2}+35x=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+35x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-35±\sqrt{35^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 35 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-35±\sqrt{1225-4\times 2\times 8}}{2\times 2}
Square 35.
x=\frac{-35±\sqrt{1225-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-35±\sqrt{1225-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-35±\sqrt{1161}}{2\times 2}
Add 1225 to -64.
x=\frac{-35±3\sqrt{129}}{2\times 2}
Take the square root of 1161.
x=\frac{-35±3\sqrt{129}}{4}
Multiply 2 times 2.
x=\frac{3\sqrt{129}-35}{4}
Now solve the equation x=\frac{-35±3\sqrt{129}}{4} when ± is plus. Add -35 to 3\sqrt{129}.
x=\frac{-3\sqrt{129}-35}{4}
Now solve the equation x=\frac{-35±3\sqrt{129}}{4} when ± is minus. Subtract 3\sqrt{129} from -35.
x=\frac{3\sqrt{129}-35}{4} x=\frac{-3\sqrt{129}-35}{4}
The equation is now solved.
0=8+x\left(2x+35\right)
Anything times zero gives zero.
0=8+2x^{2}+35x
Use the distributive property to multiply x by 2x+35.
8+2x^{2}+35x=0
Swap sides so that all variable terms are on the left hand side.
2x^{2}+35x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+35x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}+\frac{35}{2}x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{35}{2}x=-4
Divide -8 by 2.
x^{2}+\frac{35}{2}x+\left(\frac{35}{4}\right)^{2}=-4+\left(\frac{35}{4}\right)^{2}
Divide \frac{35}{2}, the coefficient of the x term, by 2 to get \frac{35}{4}. Then add the square of \frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=-4+\frac{1225}{16}
Square \frac{35}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{35}{2}x+\frac{1225}{16}=\frac{1161}{16}
Add -4 to \frac{1225}{16}.
\left(x+\frac{35}{4}\right)^{2}=\frac{1161}{16}
Factor x^{2}+\frac{35}{2}x+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{35}{4}\right)^{2}}=\sqrt{\frac{1161}{16}}
Take the square root of both sides of the equation.
x+\frac{35}{4}=\frac{3\sqrt{129}}{4} x+\frac{35}{4}=-\frac{3\sqrt{129}}{4}
Simplify.
x=\frac{3\sqrt{129}-35}{4} x=\frac{-3\sqrt{129}-35}{4}
Subtract \frac{35}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}