Solve for x
x=z-\frac{9}{z}
z\neq 0
Solve for L
L\in \mathrm{R}
x=z-\frac{9}{z}\text{ and }z\neq 0
Share
Copied to clipboard
0-z\left(x-z\right)=9
Anything times zero gives zero.
0-\left(zx-z^{2}\right)=9
Use the distributive property to multiply z by x-z.
0-zx+z^{2}=9
To find the opposite of zx-z^{2}, find the opposite of each term.
-zx+z^{2}=9
Anything plus zero gives itself.
-zx=9-z^{2}
Subtract z^{2} from both sides.
\left(-z\right)x=9-z^{2}
The equation is in standard form.
\frac{\left(-z\right)x}{-z}=\frac{9-z^{2}}{-z}
Divide both sides by -z.
x=\frac{9-z^{2}}{-z}
Dividing by -z undoes the multiplication by -z.
x=z-\frac{9}{z}
Divide -z^{2}+9 by -z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}