Evaluate
\frac{22}{15}\approx 1.466666667
Factor
\frac{2 \cdot 11}{3 \cdot 5} = 1\frac{7}{15} = 1.4666666666666666
Share
Copied to clipboard
0+\frac{17}{20}+\frac{5}{18}-\frac{17}{36}+\frac{73}{90}
The opposite of -\frac{17}{20} is \frac{17}{20}.
\frac{17}{20}+\frac{5}{18}-\frac{17}{36}+\frac{73}{90}
Add 0 and \frac{17}{20} to get \frac{17}{20}.
\frac{153}{180}+\frac{50}{180}-\frac{17}{36}+\frac{73}{90}
Least common multiple of 20 and 18 is 180. Convert \frac{17}{20} and \frac{5}{18} to fractions with denominator 180.
\frac{153+50}{180}-\frac{17}{36}+\frac{73}{90}
Since \frac{153}{180} and \frac{50}{180} have the same denominator, add them by adding their numerators.
\frac{203}{180}-\frac{17}{36}+\frac{73}{90}
Add 153 and 50 to get 203.
\frac{203}{180}-\frac{85}{180}+\frac{73}{90}
Least common multiple of 180 and 36 is 180. Convert \frac{203}{180} and \frac{17}{36} to fractions with denominator 180.
\frac{203-85}{180}+\frac{73}{90}
Since \frac{203}{180} and \frac{85}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{118}{180}+\frac{73}{90}
Subtract 85 from 203 to get 118.
\frac{59}{90}+\frac{73}{90}
Reduce the fraction \frac{118}{180} to lowest terms by extracting and canceling out 2.
\frac{59+73}{90}
Since \frac{59}{90} and \frac{73}{90} have the same denominator, add them by adding their numerators.
\frac{132}{90}
Add 59 and 73 to get 132.
\frac{22}{15}
Reduce the fraction \frac{132}{90} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}