Skip to main content
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0\left(x^{2}-6x+9\right)+\left(y+2\right)^{2}=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
0+\left(y+2\right)^{2}=9
Anything times zero gives zero.
0+y^{2}+4y+4=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
4+y^{2}+4y=9
Add 0 and 4 to get 4.
4+y^{2}+4y-9=0
Subtract 9 from both sides.
-5+y^{2}+4y=0
Subtract 9 from 4 to get -5.
y^{2}+4y-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±\sqrt{4^{2}-4\left(-5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-5\right)}}{2}
Square 4.
y=\frac{-4±\sqrt{16+20}}{2}
Multiply -4 times -5.
y=\frac{-4±\sqrt{36}}{2}
Add 16 to 20.
y=\frac{-4±6}{2}
Take the square root of 36.
y=\frac{2}{2}
Now solve the equation y=\frac{-4±6}{2} when ± is plus. Add -4 to 6.
y=1
Divide 2 by 2.
y=-\frac{10}{2}
Now solve the equation y=\frac{-4±6}{2} when ± is minus. Subtract 6 from -4.
y=-5
Divide -10 by 2.
y=1 y=-5
The equation is now solved.
0\left(x^{2}-6x+9\right)+\left(y+2\right)^{2}=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
0+\left(y+2\right)^{2}=9
Anything times zero gives zero.
0+y^{2}+4y+4=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
4+y^{2}+4y=9
Add 0 and 4 to get 4.
y^{2}+4y=9-4
Subtract 4 from both sides.
y^{2}+4y=5
Subtract 4 from 9 to get 5.
y^{2}+4y+2^{2}=5+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+4y+4=5+4
Square 2.
y^{2}+4y+4=9
Add 5 to 4.
\left(y+2\right)^{2}=9
Factor y^{2}+4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
y+2=3 y+2=-3
Simplify.
y=1 y=-5
Subtract 2 from both sides of the equation.