Evaluate
192-56i
Real Part
192
Share
Copied to clipboard
0-4\times 1\left(-48+14i\right)
Calculate 0 to the power of 2 and get 0.
0-4\left(-48+14i\right)
Multiply 4 and 1 to get 4.
0-\left(4\left(-48\right)+4\times \left(14i\right)\right)
Multiply 4 times -48+14i.
0-\left(-192+56i\right)
Do the multiplications in 4\left(-48\right)+4\times \left(14i\right).
0+\left(192-56i\right)
Multiply -1 and -192+56i to get 192-56i.
192-56i
Anything plus zero gives itself.
Re(0-4\times 1\left(-48+14i\right))
Calculate 0 to the power of 2 and get 0.
Re(0-4\left(-48+14i\right))
Multiply 4 and 1 to get 4.
Re(0-\left(4\left(-48\right)+4\times \left(14i\right)\right))
Multiply 4 times -48+14i.
Re(0-\left(-192+56i\right))
Do the multiplications in 4\left(-48\right)+4\times \left(14i\right).
Re(0+\left(192-56i\right))
Multiply -1 and -192+56i to get 192-56i.
Re(192-56i)
Anything plus zero gives itself.
192
The real part of 192-56i is 192.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}