Evaluate
-\frac{x}{y}+4.49999999999999987246512207937052
Share
Copied to clipboard
0 + \sqrt{3} \cos(30) + 3 \cdot 0.48480962024633706 \cdot 2.062665339627314 - x \frac{1}{y}
Evaluate trigonometric functions in the problem
0+\sqrt{3}\times \frac{\sqrt{3}}{2}+3\times 0.48480962024633706\times 2.062665339627314-x\times \frac{1}{y}
Get the value of \cos(30) from trigonometric values table.
0+\frac{\sqrt{3}\sqrt{3}}{2}+3\times 0.48480962024633706\times 2.062665339627314-x\times \frac{1}{y}
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
0+\frac{\sqrt{3}\sqrt{3}}{2}+1.45442886073901118\times 2.062665339627314-x\times \frac{1}{y}
Multiply 3 and 0.48480962024633706 to get 1.45442886073901118.
0+\frac{\sqrt{3}\sqrt{3}}{2}+2.99999999999999987246512207937052-x\times \frac{1}{y}
Multiply 1.45442886073901118 and 2.062665339627314 to get 2.99999999999999987246512207937052.
2.99999999999999987246512207937052+\frac{\sqrt{3}\sqrt{3}}{2}-x\times \frac{1}{y}
Add 0 and 2.99999999999999987246512207937052 to get 2.99999999999999987246512207937052.
2.99999999999999987246512207937052+\frac{3}{2}-x\times \frac{1}{y}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{112499999999999996811628051984263}{25000000000000000000000000000000}-x\times \frac{1}{y}
Add 2.99999999999999987246512207937052 and \frac{3}{2} to get \frac{112499999999999996811628051984263}{25000000000000000000000000000000}.
\frac{112499999999999996811628051984263}{25000000000000000000000000000000}-\frac{x}{y}
Express x\times \frac{1}{y} as a single fraction.
\frac{112499999999999996811628051984263y}{25000000000000000000000000000000y}-\frac{25000000000000000000000000000000x}{25000000000000000000000000000000y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25000000000000000000000000000000 and y is 25000000000000000000000000000000y. Multiply \frac{112499999999999996811628051984263}{25000000000000000000000000000000} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{25000000000000000000000000000000}{25000000000000000000000000000000}.
\frac{112499999999999996811628051984263y-25000000000000000000000000000000x}{25000000000000000000000000000000y}
Since \frac{112499999999999996811628051984263y}{25000000000000000000000000000000y} and \frac{25000000000000000000000000000000x}{25000000000000000000000000000000y} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}