Solve for m
m\in \left(-\infty,-1\right)\cup \left(\frac{15}{16},\infty\right)
Share
Copied to clipboard
15-m-16m^{2}<0
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-15+m+16m^{2}>0
Multiply the inequality by -1 to make the coefficient of the highest power in 15-m-16m^{2} positive. Since -1 is negative, the inequality direction is changed.
-15+m+16m^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-1±\sqrt{1^{2}-4\times 16\left(-15\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 1 for b, and -15 for c in the quadratic formula.
m=\frac{-1±31}{32}
Do the calculations.
m=\frac{15}{16} m=-1
Solve the equation m=\frac{-1±31}{32} when ± is plus and when ± is minus.
16\left(m-\frac{15}{16}\right)\left(m+1\right)>0
Rewrite the inequality by using the obtained solutions.
m-\frac{15}{16}<0 m+1<0
For the product to be positive, m-\frac{15}{16} and m+1 have to be both negative or both positive. Consider the case when m-\frac{15}{16} and m+1 are both negative.
m<-1
The solution satisfying both inequalities is m<-1.
m+1>0 m-\frac{15}{16}>0
Consider the case when m-\frac{15}{16} and m+1 are both positive.
m>\frac{15}{16}
The solution satisfying both inequalities is m>\frac{15}{16}.
m<-1\text{; }m>\frac{15}{16}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}