Solve for z
z=\sqrt{3}\left(-1-i\right)\approx -1.732050808-1.732050808i
Share
Copied to clipboard
0=z+2\times \frac{\sqrt{3}}{2}+i\sqrt{3}\sin(\frac{\pi }{2})
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
0=z+\frac{2\sqrt{3}}{2}+i\sqrt{3}\sin(\frac{\pi }{2})
Express 2\times \frac{\sqrt{3}}{2} as a single fraction.
0=z+\sqrt{3}+i\sqrt{3}\sin(\frac{\pi }{2})
Cancel out 2 and 2.
0=z+\sqrt{3}+i\sqrt{3}\times 1
Get the value of \sin(\frac{\pi }{2}) from trigonometric values table.
0=z+\sqrt{3}+i\sqrt{3}
Multiply i and 1 to get i.
0=z+\left(1+i\right)\sqrt{3}
Combine \sqrt{3} and i\sqrt{3} to get \left(1+i\right)\sqrt{3}.
z+\left(1+i\right)\sqrt{3}=0
Swap sides so that all variable terms are on the left hand side.
z=\left(-1-i\right)\sqrt{3}
Subtract \left(1+i\right)\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}