Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x+156=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 156}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-624}}{2}
Multiply -4 times 156.
x=\frac{-\left(-1\right)±\sqrt{-623}}{2}
Add 1 to -624.
x=\frac{-\left(-1\right)±\sqrt{623}i}{2}
Take the square root of -623.
x=\frac{1±\sqrt{623}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{623}i}{2}
Now solve the equation x=\frac{1±\sqrt{623}i}{2} when ± is plus. Add 1 to i\sqrt{623}.
x=\frac{-\sqrt{623}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{623}i}{2} when ± is minus. Subtract i\sqrt{623} from 1.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
The equation is now solved.
x^{2}-x+156=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-x=-156
Subtract 156 from both sides. Anything subtracted from zero gives its negation.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-156+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-156+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{623}{4}
Add -156 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{623}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{623}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{623}i}{2} x-\frac{1}{2}=-\frac{\sqrt{623}i}{2}
Simplify.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Add \frac{1}{2} to both sides of the equation.