Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=x^{2}-4x+9
Add 4 and 5 to get 9.
x^{2}-4x+9=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-4\right)±\sqrt{-20}}{2}
Add 16 to -36.
x=\frac{-\left(-4\right)±2\sqrt{5}i}{2}
Take the square root of -20.
x=\frac{4±2\sqrt{5}i}{2}
The opposite of -4 is 4.
x=\frac{4+2\sqrt{5}i}{2}
Now solve the equation x=\frac{4±2\sqrt{5}i}{2} when ± is plus. Add 4 to 2i\sqrt{5}.
x=2+\sqrt{5}i
Divide 4+2i\sqrt{5} by 2.
x=\frac{-2\sqrt{5}i+4}{2}
Now solve the equation x=\frac{4±2\sqrt{5}i}{2} when ± is minus. Subtract 2i\sqrt{5} from 4.
x=-\sqrt{5}i+2
Divide 4-2i\sqrt{5} by 2.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
The equation is now solved.
0=x^{2}-4x+9
Add 4 and 5 to get 9.
x^{2}-4x+9=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-9+4
Square -2.
x^{2}-4x+4=-5
Add -9 to 4.
\left(x-2\right)^{2}=-5
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Simplify.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Add 2 to both sides of the equation.