Solve for x (complex solution)
x=50+50\sqrt{223}i\approx 50+746.659226153i
x=-50\sqrt{223}i+50\approx 50-746.659226153i
Graph
Share
Copied to clipboard
x^{2}-100x+560000=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 560000}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -100 for b, and 560000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 560000}}{2}
Square -100.
x=\frac{-\left(-100\right)±\sqrt{10000-2240000}}{2}
Multiply -4 times 560000.
x=\frac{-\left(-100\right)±\sqrt{-2230000}}{2}
Add 10000 to -2240000.
x=\frac{-\left(-100\right)±100\sqrt{223}i}{2}
Take the square root of -2230000.
x=\frac{100±100\sqrt{223}i}{2}
The opposite of -100 is 100.
x=\frac{100+100\sqrt{223}i}{2}
Now solve the equation x=\frac{100±100\sqrt{223}i}{2} when ± is plus. Add 100 to 100i\sqrt{223}.
x=50+50\sqrt{223}i
Divide 100+100i\sqrt{223} by 2.
x=\frac{-100\sqrt{223}i+100}{2}
Now solve the equation x=\frac{100±100\sqrt{223}i}{2} when ± is minus. Subtract 100i\sqrt{223} from 100.
x=-50\sqrt{223}i+50
Divide 100-100i\sqrt{223} by 2.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
The equation is now solved.
x^{2}-100x+560000=0
Swap sides so that all variable terms are on the left hand side.
x^{2}-100x=-560000
Subtract 560000 from both sides. Anything subtracted from zero gives its negation.
x^{2}-100x+\left(-50\right)^{2}=-560000+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-100x+2500=-560000+2500
Square -50.
x^{2}-100x+2500=-557500
Add -560000 to 2500.
\left(x-50\right)^{2}=-557500
Factor x^{2}-100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{-557500}
Take the square root of both sides of the equation.
x-50=50\sqrt{223}i x-50=-50\sqrt{223}i
Simplify.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}