Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-8±\sqrt{8^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3}}{2}
Square 8.
x=\frac{-8±\sqrt{64-12}}{2}
Multiply -4 times 3.
x=\frac{-8±\sqrt{52}}{2}
Add 64 to -12.
x=\frac{-8±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{2\sqrt{13}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{13}}{2} when ± is plus. Add -8 to 2\sqrt{13}.
x=\sqrt{13}-4
Divide -8+2\sqrt{13} by 2.
x=\frac{-2\sqrt{13}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from -8.
x=-\sqrt{13}-4
Divide -8-2\sqrt{13} by 2.
x=\sqrt{13}-4 x=-\sqrt{13}-4
The equation is now solved.
x^{2}+8x+3=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}+8x+4^{2}=-3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-3+16
Square 4.
x^{2}+8x+16=13
Add -3 to 16.
\left(x+4\right)^{2}=13
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+4=\sqrt{13} x+4=-\sqrt{13}
Simplify.
x=\sqrt{13}-4 x=-\sqrt{13}-4
Subtract 4 from both sides of the equation.
x^{2}+8x+3=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-8±\sqrt{8^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 3}}{2}
Square 8.
x=\frac{-8±\sqrt{64-12}}{2}
Multiply -4 times 3.
x=\frac{-8±\sqrt{52}}{2}
Add 64 to -12.
x=\frac{-8±2\sqrt{13}}{2}
Take the square root of 52.
x=\frac{2\sqrt{13}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{13}}{2} when ± is plus. Add -8 to 2\sqrt{13}.
x=\sqrt{13}-4
Divide -8+2\sqrt{13} by 2.
x=\frac{-2\sqrt{13}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{13}}{2} when ± is minus. Subtract 2\sqrt{13} from -8.
x=-\sqrt{13}-4
Divide -8-2\sqrt{13} by 2.
x=\sqrt{13}-4 x=-\sqrt{13}-4
The equation is now solved.
x^{2}+8x+3=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+8x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
x^{2}+8x+4^{2}=-3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-3+16
Square 4.
x^{2}+8x+16=13
Add -3 to 16.
\left(x+4\right)^{2}=13
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x+4=\sqrt{13} x+4=-\sqrt{13}
Simplify.
x=\sqrt{13}-4 x=-\sqrt{13}-4
Subtract 4 from both sides of the equation.