Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x+14=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-3±\sqrt{3^{2}-4\times 14}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 14}}{2}
Square 3.
x=\frac{-3±\sqrt{9-56}}{2}
Multiply -4 times 14.
x=\frac{-3±\sqrt{-47}}{2}
Add 9 to -56.
x=\frac{-3±\sqrt{47}i}{2}
Take the square root of -47.
x=\frac{-3+\sqrt{47}i}{2}
Now solve the equation x=\frac{-3±\sqrt{47}i}{2} when ± is plus. Add -3 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-3}{2}
Now solve the equation x=\frac{-3±\sqrt{47}i}{2} when ± is minus. Subtract i\sqrt{47} from -3.
x=\frac{-3+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i-3}{2}
The equation is now solved.
x^{2}+3x+14=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+3x=-14
Subtract 14 from both sides. Anything subtracted from zero gives its negation.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-14+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-14+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{47}{4}
Add -14 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{47}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{47}i}{2} x+\frac{3}{2}=-\frac{\sqrt{47}i}{2}
Simplify.
x=\frac{-3+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.