Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0=x^{2}+16x-1801.6
Multiply 112.6 and 16 to get 1801.6.
x^{2}+16x-1801.6=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-16±\sqrt{16^{2}-4\left(-1801.6\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -1801.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1801.6\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+7206.4}}{2}
Multiply -4 times -1801.6.
x=\frac{-16±\sqrt{7462.4}}{2}
Add 256 to 7206.4.
x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2}
Take the square root of 7462.4.
x=\frac{\frac{8\sqrt{2915}}{5}-16}{2}
Now solve the equation x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2} when ± is plus. Add -16 to \frac{8\sqrt{2915}}{5}.
x=\frac{4\sqrt{2915}}{5}-8
Divide -16+\frac{8\sqrt{2915}}{5} by 2.
x=\frac{-\frac{8\sqrt{2915}}{5}-16}{2}
Now solve the equation x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2} when ± is minus. Subtract \frac{8\sqrt{2915}}{5} from -16.
x=-\frac{4\sqrt{2915}}{5}-8
Divide -16-\frac{8\sqrt{2915}}{5} by 2.
x=\frac{4\sqrt{2915}}{5}-8 x=-\frac{4\sqrt{2915}}{5}-8
The equation is now solved.
0=x^{2}+16x-1801.6
Multiply 112.6 and 16 to get 1801.6.
x^{2}+16x-1801.6=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+16x=1801.6
Add 1801.6 to both sides. Anything plus zero gives itself.
x^{2}+16x=\frac{9008}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+16x+8^{2}=\frac{9008}{5}+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=\frac{9008}{5}+64
Square 8.
x^{2}+16x+64=\frac{9328}{5}
Add \frac{9008}{5} to 64.
\left(x+8\right)^{2}=\frac{9328}{5}
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{\frac{9328}{5}}
Take the square root of both sides of the equation.
x+8=\frac{4\sqrt{2915}}{5} x+8=-\frac{4\sqrt{2915}}{5}
Simplify.
x=\frac{4\sqrt{2915}}{5}-8 x=-\frac{4\sqrt{2915}}{5}-8
Subtract 8 from both sides of the equation.