Solve for x
x=\frac{4\sqrt{2915}}{5}-8\approx 35.192591957
x=-\frac{4\sqrt{2915}}{5}-8\approx -51.192591957
Graph
Share
Copied to clipboard
0=x^{2}+16x-1801.6
Multiply 112.6 and 16 to get 1801.6.
x^{2}+16x-1801.6=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-16±\sqrt{16^{2}-4\left(-1801.6\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 16 for b, and -1801.6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1801.6\right)}}{2}
Square 16.
x=\frac{-16±\sqrt{256+7206.4}}{2}
Multiply -4 times -1801.6.
x=\frac{-16±\sqrt{7462.4}}{2}
Add 256 to 7206.4.
x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2}
Take the square root of 7462.4.
x=\frac{\frac{8\sqrt{2915}}{5}-16}{2}
Now solve the equation x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2} when ± is plus. Add -16 to \frac{8\sqrt{2915}}{5}.
x=\frac{4\sqrt{2915}}{5}-8
Divide -16+\frac{8\sqrt{2915}}{5} by 2.
x=\frac{-\frac{8\sqrt{2915}}{5}-16}{2}
Now solve the equation x=\frac{-16±\frac{8\sqrt{2915}}{5}}{2} when ± is minus. Subtract \frac{8\sqrt{2915}}{5} from -16.
x=-\frac{4\sqrt{2915}}{5}-8
Divide -16-\frac{8\sqrt{2915}}{5} by 2.
x=\frac{4\sqrt{2915}}{5}-8 x=-\frac{4\sqrt{2915}}{5}-8
The equation is now solved.
0=x^{2}+16x-1801.6
Multiply 112.6 and 16 to get 1801.6.
x^{2}+16x-1801.6=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+16x=1801.6
Add 1801.6 to both sides. Anything plus zero gives itself.
x^{2}+16x=\frac{9008}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+16x+8^{2}=\frac{9008}{5}+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=\frac{9008}{5}+64
Square 8.
x^{2}+16x+64=\frac{9328}{5}
Add \frac{9008}{5} to 64.
\left(x+8\right)^{2}=\frac{9328}{5}
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{\frac{9328}{5}}
Take the square root of both sides of the equation.
x+8=\frac{4\sqrt{2915}}{5} x+8=-\frac{4\sqrt{2915}}{5}
Simplify.
x=\frac{4\sqrt{2915}}{5}-8 x=-\frac{4\sqrt{2915}}{5}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}