Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+11x-8=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-11±\sqrt{11^{2}-4\left(-8\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-8\right)}}{2}
Square 11.
x=\frac{-11±\sqrt{121+32}}{2}
Multiply -4 times -8.
x=\frac{-11±\sqrt{153}}{2}
Add 121 to 32.
x=\frac{-11±3\sqrt{17}}{2}
Take the square root of 153.
x=\frac{3\sqrt{17}-11}{2}
Now solve the equation x=\frac{-11±3\sqrt{17}}{2} when ± is plus. Add -11 to 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{2}
Now solve the equation x=\frac{-11±3\sqrt{17}}{2} when ± is minus. Subtract 3\sqrt{17} from -11.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
The equation is now solved.
x^{2}+11x-8=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+11x=8
Add 8 to both sides. Anything plus zero gives itself.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=8+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=8+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=\frac{153}{4}
Add 8 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{153}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{3\sqrt{17}}{2} x+\frac{11}{2}=-\frac{3\sqrt{17}}{2}
Simplify.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Subtract \frac{11}{2} from both sides of the equation.