Solve for x (complex solution)
x=\sqrt{21}-5\approx -0.417424305
x=-\left(\sqrt{21}+5\right)\approx -9.582575695
Solve for x
x=\sqrt{21}-5\approx -0.417424305
x=-\sqrt{21}-5\approx -9.582575695
Graph
Share
Copied to clipboard
x^{2}+10x+4=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-10±\sqrt{10^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4}}{2}
Square 10.
x=\frac{-10±\sqrt{100-16}}{2}
Multiply -4 times 4.
x=\frac{-10±\sqrt{84}}{2}
Add 100 to -16.
x=\frac{-10±2\sqrt{21}}{2}
Take the square root of 84.
x=\frac{2\sqrt{21}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{21}}{2} when ± is plus. Add -10 to 2\sqrt{21}.
x=\sqrt{21}-5
Divide -10+2\sqrt{21} by 2.
x=\frac{-2\sqrt{21}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{21}}{2} when ± is minus. Subtract 2\sqrt{21} from -10.
x=-\sqrt{21}-5
Divide -10-2\sqrt{21} by 2.
x=\sqrt{21}-5 x=-\sqrt{21}-5
The equation is now solved.
x^{2}+10x+4=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}+10x+5^{2}=-4+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-4+25
Square 5.
x^{2}+10x+25=21
Add -4 to 25.
\left(x+5\right)^{2}=21
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x+5=\sqrt{21} x+5=-\sqrt{21}
Simplify.
x=\sqrt{21}-5 x=-\sqrt{21}-5
Subtract 5 from both sides of the equation.
x^{2}+10x+4=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-10±\sqrt{10^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 4}}{2}
Square 10.
x=\frac{-10±\sqrt{100-16}}{2}
Multiply -4 times 4.
x=\frac{-10±\sqrt{84}}{2}
Add 100 to -16.
x=\frac{-10±2\sqrt{21}}{2}
Take the square root of 84.
x=\frac{2\sqrt{21}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{21}}{2} when ± is plus. Add -10 to 2\sqrt{21}.
x=\sqrt{21}-5
Divide -10+2\sqrt{21} by 2.
x=\frac{-2\sqrt{21}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{21}}{2} when ± is minus. Subtract 2\sqrt{21} from -10.
x=-\sqrt{21}-5
Divide -10-2\sqrt{21} by 2.
x=\sqrt{21}-5 x=-\sqrt{21}-5
The equation is now solved.
x^{2}+10x+4=0
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}+10x+5^{2}=-4+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-4+25
Square 5.
x^{2}+10x+25=21
Add -4 to 25.
\left(x+5\right)^{2}=21
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{21}
Take the square root of both sides of the equation.
x+5=\sqrt{21} x+5=-\sqrt{21}
Simplify.
x=\sqrt{21}-5 x=-\sqrt{21}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}