Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}+19r-2140=0
Swap sides so that all variable terms are on the left hand side.
r=\frac{-19±\sqrt{19^{2}-4\left(-2140\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 19 for b, and -2140 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-19±\sqrt{361-4\left(-2140\right)}}{2}
Square 19.
r=\frac{-19±\sqrt{361+8560}}{2}
Multiply -4 times -2140.
r=\frac{-19±\sqrt{8921}}{2}
Add 361 to 8560.
r=\frac{\sqrt{8921}-19}{2}
Now solve the equation r=\frac{-19±\sqrt{8921}}{2} when ± is plus. Add -19 to \sqrt{8921}.
r=\frac{-\sqrt{8921}-19}{2}
Now solve the equation r=\frac{-19±\sqrt{8921}}{2} when ± is minus. Subtract \sqrt{8921} from -19.
r=\frac{\sqrt{8921}-19}{2} r=\frac{-\sqrt{8921}-19}{2}
The equation is now solved.
r^{2}+19r-2140=0
Swap sides so that all variable terms are on the left hand side.
r^{2}+19r=2140
Add 2140 to both sides. Anything plus zero gives itself.
r^{2}+19r+\left(\frac{19}{2}\right)^{2}=2140+\left(\frac{19}{2}\right)^{2}
Divide 19, the coefficient of the x term, by 2 to get \frac{19}{2}. Then add the square of \frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}+19r+\frac{361}{4}=2140+\frac{361}{4}
Square \frac{19}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}+19r+\frac{361}{4}=\frac{8921}{4}
Add 2140 to \frac{361}{4}.
\left(r+\frac{19}{2}\right)^{2}=\frac{8921}{4}
Factor r^{2}+19r+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r+\frac{19}{2}\right)^{2}}=\sqrt{\frac{8921}{4}}
Take the square root of both sides of the equation.
r+\frac{19}{2}=\frac{\sqrt{8921}}{2} r+\frac{19}{2}=-\frac{\sqrt{8921}}{2}
Simplify.
r=\frac{\sqrt{8921}-19}{2} r=\frac{-\sqrt{8921}-19}{2}
Subtract \frac{19}{2} from both sides of the equation.