Solve for c (complex solution)
\left\{\begin{matrix}\\c=\frac{x^{2}+48}{16}\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Solve for m (complex solution)
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&c=\frac{x^{2}}{16}+3\end{matrix}\right.
Solve for c
\left\{\begin{matrix}\\c=\frac{x^{2}+48}{16}\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&c=\frac{x^{2}}{16}+3\end{matrix}\right.
Graph
Share
Copied to clipboard
0=mx^{2}-16mc+48m
Use the distributive property to multiply m by x^{2}-16c+48.
mx^{2}-16mc+48m=0
Swap sides so that all variable terms are on the left hand side.
-16mc+48m=-mx^{2}
Subtract mx^{2} from both sides. Anything subtracted from zero gives its negation.
-16mc=-mx^{2}-48m
Subtract 48m from both sides.
-16cm=-mx^{2}-48m
Reorder the terms.
\left(-16m\right)c=-mx^{2}-48m
The equation is in standard form.
\frac{\left(-16m\right)c}{-16m}=-\frac{m\left(x^{2}+48\right)}{-16m}
Divide both sides by -16m.
c=-\frac{m\left(x^{2}+48\right)}{-16m}
Dividing by -16m undoes the multiplication by -16m.
c=\frac{x^{2}}{16}+3
Divide -m\left(x^{2}+48\right) by -16m.
0=mx^{2}-16mc+48m
Use the distributive property to multiply m by x^{2}-16c+48.
mx^{2}-16mc+48m=0
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-16c+48\right)m=0
Combine all terms containing m.
m=0
Divide 0 by x^{2}-16c+48.
0=mx^{2}-16mc+48m
Use the distributive property to multiply m by x^{2}-16c+48.
mx^{2}-16mc+48m=0
Swap sides so that all variable terms are on the left hand side.
-16mc+48m=-mx^{2}
Subtract mx^{2} from both sides. Anything subtracted from zero gives its negation.
-16mc=-mx^{2}-48m
Subtract 48m from both sides.
-16cm=-mx^{2}-48m
Reorder the terms.
\left(-16m\right)c=-mx^{2}-48m
The equation is in standard form.
\frac{\left(-16m\right)c}{-16m}=-\frac{m\left(x^{2}+48\right)}{-16m}
Divide both sides by -16m.
c=-\frac{m\left(x^{2}+48\right)}{-16m}
Dividing by -16m undoes the multiplication by -16m.
c=\frac{x^{2}}{16}+3
Divide -m\left(x^{2}+48\right) by -16m.
0=mx^{2}-16mc+48m
Use the distributive property to multiply m by x^{2}-16c+48.
mx^{2}-16mc+48m=0
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-16c+48\right)m=0
Combine all terms containing m.
m=0
Divide 0 by x^{2}-16c+48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}