Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

k^{2}+12k-4=0
Swap sides so that all variable terms are on the left hand side.
k=\frac{-12±\sqrt{12^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-12±\sqrt{144-4\left(-4\right)}}{2}
Square 12.
k=\frac{-12±\sqrt{144+16}}{2}
Multiply -4 times -4.
k=\frac{-12±\sqrt{160}}{2}
Add 144 to 16.
k=\frac{-12±4\sqrt{10}}{2}
Take the square root of 160.
k=\frac{4\sqrt{10}-12}{2}
Now solve the equation k=\frac{-12±4\sqrt{10}}{2} when ± is plus. Add -12 to 4\sqrt{10}.
k=2\sqrt{10}-6
Divide -12+4\sqrt{10} by 2.
k=\frac{-4\sqrt{10}-12}{2}
Now solve the equation k=\frac{-12±4\sqrt{10}}{2} when ± is minus. Subtract 4\sqrt{10} from -12.
k=-2\sqrt{10}-6
Divide -12-4\sqrt{10} by 2.
k=2\sqrt{10}-6 k=-2\sqrt{10}-6
The equation is now solved.
k^{2}+12k-4=0
Swap sides so that all variable terms are on the left hand side.
k^{2}+12k=4
Add 4 to both sides. Anything plus zero gives itself.
k^{2}+12k+6^{2}=4+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+12k+36=4+36
Square 6.
k^{2}+12k+36=40
Add 4 to 36.
\left(k+6\right)^{2}=40
Factor k^{2}+12k+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+6\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
k+6=2\sqrt{10} k+6=-2\sqrt{10}
Simplify.
k=2\sqrt{10}-6 k=-2\sqrt{10}-6
Subtract 6 from both sides of the equation.