Solve for a
a=-\frac{b-6}{b+1}
b\neq -1
Solve for b
b=-\frac{a-6}{a+1}
a\neq -1
Share
Copied to clipboard
0=ab+a-6+b
Subtract 4 from -2 to get -6.
ab+a-6+b=0
Swap sides so that all variable terms are on the left hand side.
ab+a+b=6
Add 6 to both sides. Anything plus zero gives itself.
ab+a=6-b
Subtract b from both sides.
\left(b+1\right)a=6-b
Combine all terms containing a.
\frac{\left(b+1\right)a}{b+1}=\frac{6-b}{b+1}
Divide both sides by b+1.
a=\frac{6-b}{b+1}
Dividing by b+1 undoes the multiplication by b+1.
0=ab+a-6+b
Subtract 4 from -2 to get -6.
ab+a-6+b=0
Swap sides so that all variable terms are on the left hand side.
ab-6+b=-a
Subtract a from both sides. Anything subtracted from zero gives its negation.
ab+b=-a+6
Add 6 to both sides.
\left(a+1\right)b=-a+6
Combine all terms containing b.
\left(a+1\right)b=6-a
The equation is in standard form.
\frac{\left(a+1\right)b}{a+1}=\frac{6-a}{a+1}
Divide both sides by a+1.
b=\frac{6-a}{a+1}
Dividing by a+1 undoes the multiplication by a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}