Solve for a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&t=\frac{5}{2}\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}\\t=\frac{5}{2}\text{, }&\text{unconditionally}\\t\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&t=\frac{5}{2}\end{matrix}\right.
Solve for t
\left\{\begin{matrix}\\t=\frac{5}{2}\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
0 = a \cdot ( - \frac { 12 } { 125 } t + \frac { 6 } { 25 } )
Share
Copied to clipboard
0=-\frac{12}{125}at+\frac{6}{25}a
Use the distributive property to multiply a by -\frac{12}{125}t+\frac{6}{25}.
-\frac{12}{125}at+\frac{6}{25}a=0
Swap sides so that all variable terms are on the left hand side.
\left(-\frac{12}{125}t+\frac{6}{25}\right)a=0
Combine all terms containing a.
\left(-\frac{12t}{125}+\frac{6}{25}\right)a=0
The equation is in standard form.
a=0
Divide 0 by -\frac{12}{125}t+\frac{6}{25}.
0=-\frac{12}{125}at+\frac{6}{25}a
Use the distributive property to multiply a by -\frac{12}{125}t+\frac{6}{25}.
-\frac{12}{125}at+\frac{6}{25}a=0
Swap sides so that all variable terms are on the left hand side.
-\frac{12}{125}at=-\frac{6}{25}a
Subtract \frac{6}{25}a from both sides. Anything subtracted from zero gives its negation.
\left(-\frac{12a}{125}\right)t=-\frac{6a}{25}
The equation is in standard form.
\frac{\left(-\frac{12a}{125}\right)t}{-\frac{12a}{125}}=-\frac{\frac{6a}{25}}{-\frac{12a}{125}}
Divide both sides by -\frac{12}{125}a.
t=-\frac{\frac{6a}{25}}{-\frac{12a}{125}}
Dividing by -\frac{12}{125}a undoes the multiplication by -\frac{12}{125}a.
t=\frac{5}{2}
Divide -\frac{6a}{25} by -\frac{12}{125}a.
0=-\frac{12}{125}at+\frac{6}{25}a
Use the distributive property to multiply a by -\frac{12}{125}t+\frac{6}{25}.
-\frac{12}{125}at+\frac{6}{25}a=0
Swap sides so that all variable terms are on the left hand side.
\left(-\frac{12}{125}t+\frac{6}{25}\right)a=0
Combine all terms containing a.
\left(-\frac{12t}{125}+\frac{6}{25}\right)a=0
The equation is in standard form.
a=0
Divide 0 by -\frac{12}{125}t+\frac{6}{25}.
0=-\frac{12}{125}at+\frac{6}{25}a
Use the distributive property to multiply a by -\frac{12}{125}t+\frac{6}{25}.
-\frac{12}{125}at+\frac{6}{25}a=0
Swap sides so that all variable terms are on the left hand side.
-\frac{12}{125}at=-\frac{6}{25}a
Subtract \frac{6}{25}a from both sides. Anything subtracted from zero gives its negation.
\left(-\frac{12a}{125}\right)t=-\frac{6a}{25}
The equation is in standard form.
\frac{\left(-\frac{12a}{125}\right)t}{-\frac{12a}{125}}=-\frac{\frac{6a}{25}}{-\frac{12a}{125}}
Divide both sides by -\frac{12}{125}a.
t=-\frac{\frac{6a}{25}}{-\frac{12a}{125}}
Dividing by -\frac{12}{125}a undoes the multiplication by -\frac{12}{125}a.
t=\frac{5}{2}
Divide -\frac{6a}{25} by -\frac{12}{125}a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}